Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines

被引:89
|
作者
Zenda, Tinashe [1 ,2 ]
Liu, Songtao [1 ,2 ]
Wang, Xuan [1 ,2 ]
Liu, Guo [1 ,2 ]
Jin, Hongyu [1 ,2 ]
Dong, Anyi [1 ,2 ]
Yang, Yatong [1 ,2 ]
Duan, Huijun [1 ,2 ]
机构
[1] Hebei Agr Univ, Dept Crop Genet & Breeding, Coll Agron, Baoding 071001, Peoples R China
[2] Hebei Agr Univ, North China Key Lab Crop Germplasm Resources, Educ Minist, Baoding 071001, Peoples R China
关键词
differentially expressed genes (DEGs); drought stress; qRT-PCR; RNA sequencing (RNA-seq); transcriptome; Zea mays L; INTERACTING PROTEIN-KINASE; ABIOTIC STRESS TOLERANCE; SALT-STRESS; SALINITY; COLD; EXPRESSION; LEAF; HEAT; IDENTIFICATION; PLANTS;
D O I
10.3390/ijms20061268
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To unravel the molecular mechanisms underpinning maize (Zea mays L.) drought stress tolerance, we conducted comprehensive comparative transcriptome and physiological analyses of drought-tolerant YE8112 and drought-sensitive MO17 inbred line seedlings that had been exposed to drought treatment for seven days. Resultantly, YE8112 seedlings maintained comparatively higher leaf relative water and proline contents, greatly increased peroxidase activity, but decreased malondialdehyde content, than MO17 seedlings. Using an RNA sequencing (RNA-seq)-based approach, we identified a total of 10,612 differentially expressed genes (DEGs). From these, we mined out four critical sets of drought responsive DEGs, including 80 specific to YE8112, 5140 shared between the two lines after drought treatment (SD_TD), five DEGs of YE8112 also regulated in SD_TD, and four overlapping DEGs between the two lines. Drought-stressed YE8112 DEGs were primarily associated with nitrogen metabolism and amino-acid biosynthesis pathways, whereas MO17 DEGs were enriched in the ribosome pathway. Additionally, our physiological analyses results were consistent with the predicted RNA-seq-based findings. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis and the RNA-seq results of twenty representative DEGs were highly correlated (R-2 = 98.86%). Crucially, tolerant line YE8112 drought-responsive genes were predominantly implicated in stress signal transduction; cellular redox homeostasis maintenance; MYB, NAC, WRKY, and PLATZ transcriptional factor modulated; carbohydrate synthesis and cell-wall remodeling; amino acid biosynthesis; and protein ubiquitination processes. Our findings offer insights into the molecular networks mediating maize drought stress tolerance.
引用
收藏
页数:30
相关论文
共 47 条
  • [21] Comparative physiological, transcriptomic, and WGCNA analyses reveal the key genes and regulatory pathways associated with drought tolerance in Tartary buckwheat
    Meng, Heng-Ling
    Sun, Pei-Yuan
    Wang, Jia-Rui
    Sun, Xiao-Qian
    Zheng, Chuan-Zhi
    Fan, Ting
    Chen, Qing-Fu
    Li, Hong-You
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [22] Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root
    Thoppurathu, Feba Jacob
    Ghorbanzadeh, Zahra
    Vala, Ashish Kumar
    Hamid, Rasmieh
    Joshi, Meera
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2022, 22 (02) : 215 - 233
  • [23] Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize
    Guo Liu
    Tinashe Zenda
    Songtao Liu
    Xuan Wang
    Hongyu Jin
    Anyi Dong
    Yatong Yang
    Huijun Duan
    Genes & Genomics, 2020, 42 : 937 - 955
  • [24] Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root
    Feba Jacob Thoppurathu
    Zahra Ghorbanzadeh
    Ashish Kumar Vala
    Rasmieh Hamid
    Meera Joshi
    Functional & Integrative Genomics, 2022, 22 : 215 - 233
  • [25] Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing
    HAO Lu-yang
    LIU Xu-yang
    ZHANG Xiao-jing
    SUN Bao-cheng
    LIU Cheng
    ZHANG Deng-feng
    TANG Huai-jun
    LI Chun-hui
    LI Yong-xiang
    SHI Yun-su
    XIE Xiao-qing
    SONG Yan-chun
    WANG Tian-yu
    LI Yu
    Journal of Integrative Agriculture, 2020, 19 (02) : 449 - 464
  • [26] Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing
    Hao Lu-yang
    Liu Xu-yang
    Zhang Xiao-jing
    Sun Bao-cheng
    Liu Cheng
    Zhang Deng-feng
    Tang Huai-jun
    Li Chun-hui
    Li Yong-xiang
    Shi Yun-su
    Xie Xiao-qing
    Song Yan-chun
    Wang Tian-yu
    Li Yu
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2020, 19 (02) : 449 - 464
  • [27] Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes
    Feng, Juanjuan
    Jia, Weitao
    Lv, Sulian
    Bao, Hexigeduleng
    Miao, Fangfang
    Zhang, Xuan
    Wang, Jinhui
    Li, Jihong
    Li, Dongsheng
    Zhu, Cheng
    Li, Shizhong
    Li, Yinxin
    PLANT BIOTECHNOLOGY JOURNAL, 2018, 16 (02) : 558 - 571
  • [28] Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties
    Niu, Yufei
    Li, Jingyu
    Sun, Fanting
    Song, Taiyu
    Han, Baojia
    Liu, Zijie
    Su, Peisen
    GENOMICS, 2023, 115 (05)
  • [29] Comparative transcriptome combined with physiological analyses revealed key factors for differential cadmium tolerance in two contrasting hemp (Cannabis sativa L.) cultivars
    Huang, Yumin
    Li, Defang
    Zhao, Lining
    Chen, Anguo
    Li, Jianjun
    Tang, Huijuan
    Pan, Gen
    Chang, Li
    Deng, Yong
    Huang, Siqi
    INDUSTRIAL CROPS AND PRODUCTS, 2019, 140
  • [30] Comparative transcriptome analyses revealed key genes involved in high amylopectin biosynthesis in wheat
    Kumar, Prashant
    Mishra, Ankita
    Rahim, Mohammed Saba
    Sharma, Vinita
    Madhawan, Akansha
    Parveen, Afsana
    Fandade, Vikas
    Sharma, Himanshu
    Roy, Joy
    3 BIOTECH, 2022, 12 (11)