On the control of a viscoelastic damped Timoshenko-type system

被引:67
作者
Guesmia, Aissa [1 ]
Messaoudi, Salim A. [2 ]
机构
[1] Univ Paul Verlaine Metz, ISGMP, LMAM, F-57045 Metz 01, France
[2] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
Exponential decay; Polynomial decay; Relaxation function; Timoshinko; Viscoelastic;
D O I
10.1016/j.amc.2008.05.122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following Timoshenko system phi(tt) - (phi(x) + psi)(x) = 0, (0, 1) x (0, +infinity) psi(tt) - psi(xx) + integral(t)(0) g(t - tau)psi(xx)(tau)d tau + phi(x) + psi = 0, (0, 1) x (0, +infinity) with Dirichlet boundary conditions where g is a positive nonincreasing function. We establish an exponential and polynomial decay results with weaker conditions on g than those required in [F. Ammar-Khodja, A. Benabdallah, J. E. Munoz Rivera, R. Racke, Energy decay for Timoshenko systems of memory type, J. Differ. Equations, 194 ( 2003) 82-115]. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 14 条
[1]   Energy decay for Timoshenko systems of memory type [J].
Ammar-Khodja, F ;
Benabdallah, A ;
Rivera, JEM ;
Racke, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :82-115
[2]  
[Anonymous], 2002, ABSTR APPL ANAL
[3]  
Berrang ME, 2004, J APPL POULTRY RES, V13, P1, DOI 10.1093/japr/13.1.1
[4]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[5]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[6]  
Dong-Hua Shi, 2001, IMA Journal of Mathematical Control and Information, V18, P395, DOI 10.1093/imamci/18.3.395
[7]   Boundary feedback stabilization of Timoshenko beam with boundary dissipation [J].
Feng, DX ;
Shi, DH ;
Zhang, WT .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05) :483-490
[8]   BOUNDARY CONTROL OF THE TIMOSHENKO BEAM [J].
KIM, JU ;
RENARDY, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (06) :1417-1429
[9]  
Liu Z., 1999, SEMIGROUPS ASS DISSI
[10]   Exponential stability for the Timoshenko system with two weak dampings [J].
Raposo, CA ;
Ferreira, J ;
Santos, ML ;
Castro, NNO .
APPLIED MATHEMATICS LETTERS, 2005, 18 (05) :535-541