Leighton and Hille-type Oscillation Criteria for Second Order Damped Elliptic Equations

被引:0
作者
Xu, Zhiting [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Oscillation; second order; elliptic differential equation; damped;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Leighton and Hille-type oscillation criteria are established for the second order damped elliptic differential equation Sigma(N)(i,j=1) D-i[a(ij)(x)D(i)y] + Sigma(N)(i=1)b(i)(x)D(i)y + c(x)f(y) = 0. The obtained results extend and improve some known results in literature.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 16 条
[1]  
Gilbarg D., 1998, Elliptic Partial Differential Equations of Second Order, V2nd ed.
[2]  
Hartman P., 1982, Ordinary differential equations, V2
[3]   NON-OSCILLATION THEOREMS [J].
HILLE, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 64 (SEP) :234-252
[4]  
Kamenev I.V., 1977, DIFF EQUAT+, V13, P2141
[5]  
Kamenev I. V., 1978, Mat. Zametki, V23, P249
[7]  
MARIK R, 2004, ELECTRON J DIFFER EQ, V11, P1
[8]   OSCILLATION OF SEMI-LINEAR ELLIPTIC INEQUALITIES BY RICCATI TRANSFORMATIONS [J].
NOUSSAIR, ES ;
SWANSON, CA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (04) :908-923
[9]  
SWANSON CA, 1979, CANAD MATH B, V22, P139
[10]  
SWANSON CA, 1968, COMPARISON OSCILLATO