Integrated models incorporating radiologic and radiomic features predict meningioma grade, local failure, and overall survival

被引:82
作者
Morin, Olivier [1 ]
Chen, William C. [1 ]
Nassiri, Farshad [2 ]
Susko, Matthew [1 ]
Magill, Stephen T. [3 ]
Vasudevan, Harish N. [1 ]
Wu, Ashley [1 ]
Vallieres, Martin [1 ]
Gennatas, Efstathios D. [1 ]
Valdes, Gilmer [1 ]
Pekmezci, Melike [4 ]
Alcaide-Leon, Paula [5 ]
Choudhury, Abrar [1 ,3 ]
Interian, Yannet [1 ]
Mortezavi, Siavash [1 ]
Turgutlu, Kerem [1 ]
Bush, Nancy Ann Oberheim [3 ]
Solberg, Timothy D. [1 ]
Braunstein, Steve E. [1 ]
Sneed, Penny K. [1 ]
Perry, Arie [3 ,4 ]
Zadeh, Gelareh [1 ]
McDermott, Michael W. [3 ]
Villanueva-Meyer, Javier E. [5 ]
Raleigh, David R. [1 ,3 ,6 ,7 ]
机构
[1] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA 94118 USA
[2] Univ Toronto, Dept Surg, Toronto, ON, Canada
[3] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94118 USA
[4] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94118 USA
[5] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA USA
[6] Univ Calif San Francisco, Dept Radiat Oncol, 505 Parnassus Ave, L08-L75, Box 0226, San Francisco, CA 94143 USA
[7] Univ Calif San Francisco, Dept Neurol Surg, 505 Parnassus Ave, L08-L75, Box 0226, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
diffusion weighted imaging; magnetic resonance imaging; meningioma; quantitative imaging; radiomics; CLASSIFICATION; RECURRENCE; SYSTEM; TUMORS;
D O I
10.1093/noajnl/vdz011
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background We investigated prognostic models based on clinical, radiologic, and radiomic feature to preoperatively identify meningiomas at risk for poor outcomes. Methods Retrospective review was performed for 303 patients who underwent resection of 314 meningiomas (57% World Health Organization grade I, 35% grade II, and 8% grade III) at two independent institutions, which comprised primary and external datasets. For each patient in the primary dataset, 16 radiologic and 172 radiomic features were extracted from preoperative magnetic resonance images, and prognostic features for grade, local failure (LF) or overall survival (OS) were identified using the Kaplan-Meier method, log-rank tests and recursive partitioning analysis. Regressions and random forests were used to generate and test prognostic models, which were validated using the external dataset. Results Multivariate analysis revealed that apparent diffusion coefficient hypointensity (HR 5.56, 95% CI 2.01-16.7, P = .002) was associated with high grade meningioma, and low sphericity was associated both with increased LF (HR 2.0, 95% CI 1.1-3.5, P = .02) and worse OS (HR 2.94, 95% CI 1.47-5.56, P = .002). Both radiologic and radiomic predictors of adverse meningioma outcomes were significantly associated with molecular markers of aggressive meningioma biology, such as somatic mutation burden, DNA methylation status, and FOXM1 expression. Integrated prognostic models combining clinical, radiologic, and radiomic features demonstrated improved accuracy for meningioma grade, LF, and OS (area under the curve 0.78, 0.75, and 0.78, respectively) compared to models based on clinical features alone. Conclusions Preoperative radiologic and radiomic features such as apparent diffusion coefficient and sphericity can predict tumor grade, LF, and OS in patients with meningioma.
引用
收藏
页数:15
相关论文
共 34 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Genomic landscape of high-grade meningiomas [J].
Bi, Wenya Linda ;
Greenwald, Noah F. ;
Abedalthagafi, Malak ;
Wala, Jeremiah ;
Gibson, Will J. ;
Agarwalla, Pankaj K. ;
Horowitz, Peleg ;
Schumacher, Steven E. ;
Esaulova, Ekaterina ;
Mei, Yu ;
Chevalier, Aaron ;
Ducar, Matthew A. ;
Thorner, Aaron R. ;
van Hummelen, Paul ;
Stemmer-Rachamimov, Anat O. ;
Artyomov, Maksym ;
Al-Mefty, Ossama ;
Dunn, Gavin P. ;
Santagata, Sandro ;
Dunn, Ian F. ;
Beroukhim, Rameen .
NPJ GENOMIC MEDICINE, 2017, 2
[3]   An Empirical Approach for Avoiding False Discoveries When Applying High-Dimensional Radiomics to Small Datasets [J].
Chatterjee, Avishek ;
Vallieres, Martin ;
Dohan, Anthony ;
Levesque, Ives R. ;
Ueno, Yoshiko ;
Bist, Vipul ;
Saif, Sameh ;
Reinhold, Caroline ;
Seuntjens, Jan .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) :201-209
[4]   Histopathological features predictive of local control of atypical meningioma after surgery and adjuvant radiotherapy [J].
Chen, William C. ;
Magill, Stephen T. ;
Wu, Ashley ;
Vasudevan, Harish N. ;
Morin, Olivier ;
Aghi, Manish K. ;
Theodosopoulos, Philip V. ;
Perry, Arie ;
McDermott, Michael W. ;
Sneed, Penny K. ;
Braunstein, Steve E. ;
Raleigh, David R. .
JOURNAL OF NEUROSURGERY, 2019, 130 (02) :443-450
[5]   Radiographic prediction of meningioma grade by semantic and radiomic features [J].
Coroller, Thibaud P. ;
Bi, Wenya Linda ;
Huynh, Elizabeth ;
Abedalthagafi, Malak ;
Aizer, Ayal A. ;
Greenwald, Noah F. ;
Parmar, Chintan ;
Narayan, Vivek ;
Wu, Winona W. ;
de Moura, Samuel Miranda ;
Gupta, Saksham ;
Beroukhim, Rameen ;
Wen, Patrick Y. ;
Al-Mefty, Ossama ;
Dunn, Ian F. ;
Santagata, Sandro ;
Alexander, Brian M. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
PLOS ONE, 2017, 12 (11)
[6]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[7]  
Gennatas E., 2017, DISSERTATIONS, P2302
[8]   Long-term survival analysis of atypical meningiomas: survival rates, prognostic factors, operative and radiotherapy treatment [J].
Hammouche, Salah ;
Clark, Simon ;
Wong, Alex Hie Lin ;
Eldridge, Paul ;
Farah, Jibril Osman .
ACTA NEUROCHIRURGICA, 2014, 156 (08) :1475-1481
[9]   Clinical Applications of Quantitative 3-Dimensional MRI Analysis for Pediatric Embryonal Brain Tumors [J].
Hara, Jared H. ;
Wu, Ashley ;
Villanueva-Meyer, Javier E. ;
Valdes, Gilmer ;
Daggubati, Vikas ;
Mueller, Sabine ;
Solberg, Timothy D. ;
Braunstein, Steve E. ;
Morin, Olivier ;
Raleigh, David R. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :744-756
[10]   Integrated genomic analyses of de novo pathways underlying atypical meningiomas [J].
Harmanci, Akdes Serin ;
Youngblood, Mark W. ;
Clark, Victoria E. ;
Coskun, Sueleyman ;
Henegariu, Octavian ;
Duran, Daniel ;
Erson-Omay, E. Zeynep ;
Kaulen, Leon D. ;
Lee, Tong Ihn ;
Abraham, Brian J. ;
Simon, Matthias ;
Krischek, Boris ;
Timmer, Marco ;
Goldbrunner, Roland ;
Omay, S. Buelent ;
Baranoski, Jacob ;
Baran, Burcin ;
Carrion-Grant, Geneive ;
Bai, Hanwen ;
Mishra-Gorur, Ketu ;
Schramm, Johannes ;
Moliterno, Jennifer ;
Vortmeyer, Alexander O. ;
Bilguevar, Kaya ;
Yasuno, Katsuhito ;
Young, Richard A. ;
Guenel, Murat .
NATURE COMMUNICATIONS, 2017, 8