MicroRNAs and Atherosclerosis

被引:127
作者
Madrigal-Matute, Julio [1 ,2 ,3 ]
Rotllan, Noemi [1 ,2 ,3 ]
Aranda, Juan F. [1 ,2 ,3 ]
Fernandez-Hernando, Carlos [1 ,2 ,3 ]
机构
[1] NYU, Sch Med, Dept Med, Leon H Charney Div Cardiol, New York, NY 10016 USA
[2] NYU, Sch Med, Marc & Ruti Bell Vasc Biol & Dis Program, New York, NY 10016 USA
[3] NYU, Sch Med, Dept Cell Biol, Leon H Charney Div Cardiol, New York, NY 10016 USA
基金
美国国家卫生研究院;
关键词
MicroRNA; Atherosclerosis; Anti-miRNA therapy; miR-33; REVERSE CHOLESTEROL TRANSPORT; TARGET MESSENGER-RNAS; CIRCULATING MICRORNAS; IN-VIVO; ENDOTHELIAL-CELL; INFLAMMATORY RESPONSE; TANGIER-DISEASE; LIPID UPTAKE; AMINO-ACID; EXPRESSION;
D O I
10.1007/s11883-013-0322-z
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
MicroRNAs (miRNAs) are small, similar to 22 nucleotide (nt) sequences of RNA that regulate gene expression at posttranscriptional level. These endogenous gene expression inhibitors were primarily described in cancer but recent exciting findings have also demonstrated a key role in cardiovascular diseases (CVDs), including atherosclerosis. MiRNAs control endothelial cell (EC), vascular smooth muscle cell (VSMC), and macrophage functions, and thereby regulate the progression of atherosclerosis. MiRNA expression is modulated by different stimuli involved in every stage of atherosclerosis, and conversely miRNAs modulates several pathways implicated in plaque development such as cholesterol metabolism. In the present review, we focus on the importance of miRNAs in atherosclerosis, and we further discuss their potential use as biomarkers and therapeutic targets in CVDs.
引用
收藏
页数:8
相关论文
共 92 条
[1]   Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma [J].
Arroyo, Jason D. ;
Chevillet, John R. ;
Kroh, Evan M. ;
Ruf, Ingrid K. ;
Pritchard, Colin C. ;
Gibson, Donald F. ;
Mitchell, Patrick S. ;
Bennett, Christopher F. ;
Pogosova-Agadjanyan, Era L. ;
Stirewalt, Derek L. ;
Tait, Jonathan F. ;
Tewari, Muneesh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (12) :5003-5008
[2]   MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation [J].
Asgeirsdottir, S. A. ;
van Solingen, C. ;
Kurniati, N. F. ;
Zwiers, P. J. ;
Heeringa, P. ;
van Meurs, M. ;
Satchell, S. C. ;
Saleem, M. A. ;
Mathieson, P. W. ;
Banas, B. ;
Kamps, J. A. A. M. ;
Rabelink, T. J. ;
van Zonneveld, A. J. ;
Molema, G. .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2012, 302 (12) :F1630-F1639
[3]   MicroRNA-122 Inhibits Tumorigenic Properties of Hepatocellular Carcinoma Cells and Sensitizes These Cells to Sorafenib [J].
Bai, Shoumei ;
Nasser, Mohd W. ;
Wang, Bo ;
Hsu, Shu-Hao ;
Datta, Jharna ;
Kutay, Huban ;
Yadav, Arti ;
Nuovo, Gerard ;
Kumar, Pawan ;
Ghoshal, Kalpana .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (46) :32015-32027
[4]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[5]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[6]   The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease [J].
Bodzioch, M ;
Orsó, E ;
Klucken, T ;
Langmann, T ;
Böttcher, L ;
Diederich, W ;
Drobnik, W ;
Barlage, S ;
Büchler, C ;
Porsch-Özcürümez, M ;
Kaminski, WE ;
Hahmann, HW ;
Oette, K ;
Rothe, G ;
Aslanidis, C ;
Lackner, KJ ;
Schmitz, G .
NATURE GENETICS, 1999, 22 (04) :347-351
[7]   Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency [J].
Brooks-Wilson, A ;
Marcil, M ;
Clee, SM ;
Zhang, LH ;
Roomp, K ;
van Dam, M ;
Yu, L ;
Brewer, C ;
Collins, JA ;
Molhuizen, HOF ;
Loubser, O ;
Ouelette, BFF ;
Fichter, K ;
Ashbourne-Excoffon, KJD ;
Sensen, CW ;
Scherer, S ;
Mott, S ;
Denis, M ;
Martindale, D ;
Frohlich, J ;
Morgan, K ;
Koop, B ;
Pimstone, S ;
Kastelein, JJP ;
Genest, J ;
Hayden, MR .
NATURE GENETICS, 1999, 22 (04) :336-345
[8]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[9]  
BROWN MS, 1976, NEW ENGL J MED, V294, P1386
[10]   MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 [J].
Chamorro-Jorganes, Aranzazu ;
Araldi, Elisa ;
Penalva, Luiz O. F. ;
Sandhu, Devraj ;
Fernandez-Hernando, Carlos ;
Suarez, Yajaira .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2011, 31 (11) :2595-U578