Sequences of optimal identifying codes

被引:26
作者
Laihonen, TK [1 ]
机构
[1] Univ Turku, Dept Math, FIN-20014 Turku, Finland
基金
芬兰科学院;
关键词
binary Hamming space; binary hypercube; covering code; identifying code; optimal code;
D O I
10.1109/18.986043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Locating faulty processors in a multiprocessor system gives the motivation for identifying codes. Denote by I the maximum number of simultaneously malfunctioning processors. In this correspondence, we show that if l greater than or equal to 3, then the problem of finding the smallest cardinality of a (1, less than or equal tol)-iiientifying code in a binary hypercube is equivalent to the problem of finding the smallest size of a (2l - I) -fold 1-covering. This observation yields infinite sequences of optimal identifying codes for every l (l greater than or equal to 3).
引用
收藏
页码:774 / 776
页数:3
相关论文
共 15 条
  • [1] Blass U, 2000, J COMB DES, V8, P151, DOI 10.1002/(SICI)1520-6610(2000)8:2<151::AID-JCD8>3.0.CO
  • [2] 2-S
  • [3] BLASS U, IN PRESS DISCR MATH
  • [4] CHARON I, UNPUB ELECT J COMBIN
  • [5] COHEN G, 1997, COVERING CODE
  • [6] COHEN G, 1999, DIMACS SERIES DISCRE, P97
  • [7] EXOO G, COMPUTATIONAL RESULT
  • [8] HONKALA I, IN PRESS ELECT NOTES
  • [9] HONKALA I, 1999, P 7 NORD COMB C TURK, P39
  • [10] HONKALA I, IN PRESS DISCR MATH