An improvement of PM2.5 concentration prediction using optimised deep LSTM

被引:2
|
作者
Choe, Tong-Hyok [1 ]
Ho, Chung-Song [2 ]
机构
[1] Kim Il Sung Univ, Fac Global Environm Sci, Pyongyang 999093, North Korea
[2] Kim Il Sung Univ, Inst Adv Sci, Pyongyang 999093, North Korea
关键词
air quality; air pollution; PM25; prediction; deep LSTM; long short term memory; neural networks; GA; genetic algorithm; optimise; environment; NEURAL-NETWORKS;
D O I
10.1504/IJEP.2021.126976
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air pollution poses a serious threat to human health and the environment worldwide, of which particulate matter (PM2.5), receives an increasing attention with deeper recognition of human health risk. In this paper, we proposed a method for optimising the deep long short term memory (LSTM) model to improve the quality of PM2.5 concentration prediction and used it for PM2.5 concentration prediction. The parameters of the optimised deep LSTM model were determined by using the genetic algorithm, and were applied to predict PM2.5 concentration, thus achieving better results than when the genetic algorithm was not used. The predicted PM2.5 concentration results of the optimised deep LSTM model were compared with the recurrent neural network (RNN) and gated recurrent unit (GRU) models, respectively, showing that the LSTM model had improved performance. This method would possibly contribute to enrich noble solutions in the aspect of air-pollution prediction.
引用
收藏
页码:249 / 260
页数:13
相关论文
共 50 条
  • [11] Prediction of PM2.5 concentration based on the weighted RF-LSTM model
    Ding, Weifu
    Sun, Huihui
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3023 - 3037
  • [12] Prediction of PM2.5 concentration based on the weighted RF-LSTM model
    Weifu Ding
    Huihui Sun
    Earth Science Informatics, 2023, 16 : 3023 - 3037
  • [13] Deep-learning architecture for PM2.5 concentration prediction: A review
    Zhou, Shiyun
    Wang, Wei
    Zhu, Long
    Qiao, Qi
    Kang, Yulin
    ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY, 2024, 21
  • [14] Research on PM2.5 Concentration Prediction Based on the CE-AGA-LSTM Model
    Wu, Xiaoxuan
    Zhang, Chen
    Zhu, Jun
    Zhang, Xin
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [15] A Novel Combined Prediction Scheme Based on CNN and LSTM for Urban PM2.5 Concentration
    Qin, Dongming
    Yu, Jian
    Zou, Guojian
    Yong, Ruihan
    Zhao, Qin
    Zhang, Bo
    IEEE ACCESS, 2019, 7 : 20050 - 20059
  • [16] A balanced social LSTM for PM2.5 concentration prediction based on local spatiotemporal correlation
    Shi, Lukui
    Zhang, Huizhen
    Xu, Xia
    Han, Ming
    Zuo, Peiliang
    Chemosphere, 2022, 291
  • [17] PM2.5 CONCENTRATION PREDICTION BASED ON HIERARCHICAL ATTENTION LSTM IN BIG DATA ENVIRONMENT
    Qin, Dongxia
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (01): : 365 - 375
  • [18] Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm
    Bai, Xuesong
    Zhang, Na
    Cao, Xiaoyi
    Chen, Wenqian
    PEERJ COMPUTER SCIENCE, 2024, 12
  • [19] A balanced social LSTM for PM2.5 concentration prediction based on local spatiotemporal correlation
    Shi, Lukui
    Zhang, Huizhen
    Xu, Xia
    Han, Ming
    Zuo, Peiliang
    CHEMOSPHERE, 2022, 291
  • [20] Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm
    Bai, Xuesong
    Zhang, Na
    Cao, Xiaoyi
    Chen, Wenqian
    PEERJ, 2024, 12