Construction of regular and singular Green's functions

被引:2
作者
Wang, Aiping [1 ]
Ridenhour, Jerry [2 ]
Zettl, Anton [3 ]
机构
[1] Tianjin Univ Sci & Technol, Dept Math, Tianjin 300457, Peoples R China
[2] Univ No Iowa, Dept Math, Cedar Falls, IA 50614 USA
[3] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1017/S0308210510001630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Green function of singular limit-circle problems is constructed directly for the problem, not as a limit of sequences of regular Green's functions. This construction is used to obtain adjointness and self-adjointness conditions which are entirely analogous to the regular case. As an application, a new and explicit formula for the Green function of the classical Legendre problem is found.
引用
收藏
页码:171 / 198
页数:28
相关论文
共 50 条
  • [41] On the Construction of Distributed Elementary Source Self-regularized Dyadic Green's Functions
    Vagh, H. A.
    Baghai-Wadji, A. R.
    PROCEEDINGS OF PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2012), 2012, : 1870 - 1874
  • [42] Generalized Functions and Generalized Regular Solutions for Traditionally Singular Problems of Mathematical Physics
    V. V. Vasiliev
    S. A. Lurie
    G. I. Kriven
    Lobachevskii Journal of Mathematics, 2022, 43 : 2003 - 2009
  • [43] Non-singular Green's functions for the unbounded Poisson equation in one, two and three dimensions
    Hejlesen, Mads Molholm
    Winckelmans, Gregoire
    Walther, Jens Honore
    APPLIED MATHEMATICS LETTERS, 2019, 89 : 28 - 34
  • [44] Regular Singular Points
    Haraoka, Yoshishige
    LINEAR DIFFERENTIAL EQUATIONS IN THE COMPLEX DOMAIN: FROM CLASSICAL THEORY TO FOREFRONT, 2020, 2271 : 29 - 62
  • [45] REGULAR SINGULAR ASYMPTOTICS
    BRUNING, J
    SEELEY, R
    ADVANCES IN MATHEMATICS, 1985, 58 (02) : 133 - 148
  • [46] Green's relations on the monoid of regular hypersubstitutions
    Changphas, Th.
    Wismath, S. L.
    ALGEBRA COLLOQUIUM, 2006, 13 (04) : 623 - 632
  • [47] On toroidal Green's functions
    Bates, JW
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (07) : 3679 - 3691
  • [48] Green's functions on fractals
    Kigami, J
    Sheldon, DR
    Strichartz, RS
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (04) : 385 - 402
  • [49] The Picard-Lindelof's theorem at a regular singular point
    Ferreira, Chelo
    Lopez, Jose L.
    Sinusia, Ester Perez
    CARPATHIAN JOURNAL OF MATHEMATICS, 2013, 29 (02) : 167 - 178
  • [50] Green's Functions in Filectrodynamics
    Shabunin, S.
    2019 27TH TELECOMMUNICATIONS FORUM (TELFOR 2019), 2019, : 405 - 410