The effects of fluoxetine on the human adipose-derived stem cell proliferation and differentiation

被引:8
|
作者
Khademi, Marzieh [1 ]
Ghavamabadi, Razieh Taghizadeh [1 ,2 ]
Taghavi, Mohammad M. [1 ,2 ]
Shabanizadeh, Ahmad [1 ,3 ]
Shariati-kohbanani, Mehdi [1 ,2 ]
Hassanipour, Mahsa [2 ,4 ]
Taghipour, Zahra [1 ,2 ]
机构
[1] Rafsanjan Univ Med Sci, Dept Anat, Sch Med, Rafsanjan, Iran
[2] Rafsanjan Univ Med Sci, Physiol Pharmacol Res Ctr, Rafsanjan, Iran
[3] Rafsanjan Univ Med Sci, Immunol Infect Dis Res Ctr, Rafsanjan, Iran
[4] Rafsanjan Univ Med Sci, Dept Physiol & Pharmacol, Sch Med, Rafsanjan, Iran
关键词
adipogenic differentiation; fluoxetine; human adipose-derived stem cell; osteogenic differentiation; proliferation; IN-VITRO DIFFERENTIATION; INDUCED APOPTOSIS; BONE LOSS; SEROTONIN; EXPOSURE; ANTIDEPRESSANTS; EXPRESSION; ALTERS; GROWTH; MICE;
D O I
10.1111/fcp.12426
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Fluoxetine is one of the most commonly used antidepressants. Fluoxetine could prevent the mesenchymal stem cell differentiation in lung fetus of rat. Moreover, the mesenchymal stem cells are also present in adult tissues. Therefore, in the current study, we aimed to investigate the effects of fluoxetine (FLX) on both proliferation and adipogenic/osteogenic differentiation of human adipose-derived stem cells (ADSCs). After culturing of human ADSCs, these cells were treated with two concentrations of FLX (10 and 20 mu m). Then, cells were differentiated by adding osteogenic and adipogenic media. The effect of FLX on human ADSCs proliferation was evaluated by MTT assay. Fluoxetine role on adipogenic and osteogenic differentiation of human ADSCs was analyzed by oil red and alizarin red staining and RT-PCR reaction. According to MTT assay, FLX showed a time- and concentration-dependent proliferation response and eventually decreased human ADSCs proliferation. RT-PCR analysis indicated that FLX significantly diminished the expression of osteogenesis-related genes such as RUNX2 and alkaline phosphatase (ALP). Data also revealed a significant reduction in the expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) and fatty acid-binding protein (FABP) (specific genes of adipogenic lineage). In addition, FLX decreased mineralized matrix and the amount of lipid droplets in human ADSCs by staining methods. Our observation demonstrated that the effects of FLX may be time-dependent. This drug possesses an increasing phase in proliferation and survival of human ADSCs (first 24 h) following a decreasing phase (after 48 h). Moreover, FLX could attenuate both osteogenic and adipogenic differentiation of human ADSCs.
引用
收藏
页码:286 / 295
页数:10
相关论文
共 50 条
  • [41] Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells
    Strong, Amy L.
    Hunter, Ryan S.
    Jones, Robert B.
    Bowles, Annie C.
    Dutreil, Maria F.
    Gaupp, Dina
    Hayes, Daniel J.
    Gimble, Jeffrey M.
    Levi, Benjamin
    McNulty, Margaret A.
    Bunnell, Bruce A.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2016, 14
  • [42] Effects mediated by the α7 nicotinic acetylcholine receptor on cell proliferation and migration in rat adipose-derived stem cells
    Pernarella, Marta
    Piovesana, Roberta
    Matera, Carlo
    Faroni, Alessandro
    Fiore, Mario
    Dini, Luciana
    Reid, Adam J.
    Dallanoce, Clelia
    Tata, Ada Maria
    EUROPEAN JOURNAL OF HISTOCHEMISTRY, 2020, 64 : 61 - 70
  • [43] ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells
    Chiarella, Emanuela
    Aloisio, Annamaria
    Scicchitano, Stefania
    Lucchino, Valeria
    Montalcini, Ylenia
    Galasso, Olimpio
    Greco, Manfredi
    Gasparini, Giorgio
    Mesuraca, Maria
    Bond, Heather M.
    Morrone, Giovanni
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (12)
  • [44] Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells
    Lian, Rui-Ling
    Guo, Xiao-Ling
    Chen, Jian-Su
    Guo, Yong-Long
    Zheng, Jia-Fu
    Chen, Yuan-Wen
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2016, 413 (1-2) : 69 - 85
  • [45] miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells
    Zhang, Zi-ji
    Zhang, Hao
    Kang, Yan
    Sheng, Pu-yi
    Ma, Yuan-chen
    Yang, Zi-bo
    Zhang, Zhi-qi
    Fu, Ming
    He, Ai-shan
    Liao, Wei-ming
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2012, 113 (03) : 888 - 898
  • [46] The Biomolecular Basis of Adipogenic Differentiation of Adipose-Derived Stem Cells
    Scioli, Maria Giovanna
    Bielli, Alessandra
    Gentile, Pietro
    Mazzaglia, Donatella
    Cervelli, Valerio
    Orlandi, Augusto
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (04) : 6517 - 6526
  • [47] Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells
    Liu, Meimei
    Li, Yan
    Yang, Shang-Tian
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2017, 11 (01) : 276 - 284
  • [48] Adipose-derived stem cells: An appropriate selection for osteogenic differentiation
    Shafaei, Hajar
    Kalarestaghi, Hossein
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (11) : 8371 - 8386
  • [49] The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells
    Ko, Wan-Kyu
    Heo, Dong Nyoung
    Moon, Ho-Jin
    Lee, Sang Jin
    Bae, Min Soo
    Lee, Jung Bok
    Sun, In-Cheol
    Jeon, Hoon Bong
    Park, Hun Kuk
    Kwon, Il Keun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 438 : 68 - 76
  • [50] Osteogenic Differentiation from Mouse Adipose-Derived Stem Cells and Bone Marrow Stem Cells
    Huang, Cheng-Pu
    Hsu, Keng-Chia
    Wu, Chean-Ping
    Wu, Hsi-Tien
    CHINESE JOURNAL OF PHYSIOLOGY, 2022, 65 (01): : 21 - 29