ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS

被引:3
|
作者
Vatandoost, Ebrahim [1 ]
Ramezani, Fatemeh [2 ]
Alikhani, Saeid [2 ]
机构
[1] Imam Khomeini Int Univ, Dept Basic Sci, Qazvin, Iran
[2] Yazd Univ, Dept Math, POB 89195-741, Yazd, Iran
关键词
Zero forcing number; generalized Sierpinski graph; Sierpinski graph; path covering; MINIMUM RANK; DIMENSION; CODES; SETS;
D O I
10.22108/toc.2018.101107.1463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the Zero forcing number of Generalized Sierpinski graphs S(G, t). More precisely, we obtain a general lower bound on the Zero forcing number of S(G, t) and we show that this bound is tight. In particular, we consider the cases in which the base graph G is a star, path, a cycle or a complete graph.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [31] Some properties of the closed global shadow graphs and their zero forcing number
    Raksha, M. R.
    Dominic, Charles
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 137 - 154
  • [32] Characterization of All Graphs with a Failed Skew Zero Forcing Number of 1
    Johnson, Aidan
    Vick, Andrew E.
    Narayan, Darren A.
    MATHEMATICS, 2022, 10 (23)
  • [33] An Inverse Approach for Finding Graphs with a Failed Zero Forcing Number of k
    Kaudan, Chirag
    Taylor, Rachel
    Narayan, Darren A.
    MATHEMATICS, 2023, 11 (19)
  • [34] METRIC DIMENSION AND ZERO FORCING NUMBER OF TWO FAMILIES OF LINE GRAPHS
    Eroh, Linda
    Kang, Cong X.
    Yi, Eunjeong
    MATHEMATICA BOHEMICA, 2014, 139 (03): : 467 - 483
  • [35] A Comparison Between the Zero Forcing Number and the Strong Metric Dimension of Graphs
    Kang, Cong X.
    Yi, Eunjeong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 356 - 365
  • [36] Zero Forcing Number of Cubic and Quartic Cayley Graphs on Abelian Groups
    Li, Huixian
    Ji, Shengjin
    Li, Guang
    JOURNAL OF INTERCONNECTION NETWORKS, 2025,
  • [37] Domination parameters of generalized Sierpinski graphs
    Varghese, Jismy
    Anu, V
    Aparna, Lakshmanan S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 4 - 10
  • [38] Total coloring of generalized Sierpinski graphs
    Geetha, J.
    Somasundaram, K.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 58 - 69
  • [39] Packing coloring of generalized Sierpinski graphs
    Korze, Danilo
    Vesel, Aleksander
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [40] Packing coloring of generalized Sierpinski ´ graphs
    Korže, Danilo
    Vesel, Aleksander
    Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):