ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS

被引:3
|
作者
Vatandoost, Ebrahim [1 ]
Ramezani, Fatemeh [2 ]
Alikhani, Saeid [2 ]
机构
[1] Imam Khomeini Int Univ, Dept Basic Sci, Qazvin, Iran
[2] Yazd Univ, Dept Math, POB 89195-741, Yazd, Iran
关键词
Zero forcing number; generalized Sierpinski graph; Sierpinski graph; path covering; MINIMUM RANK; DIMENSION; CODES; SETS;
D O I
10.22108/toc.2018.101107.1463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the Zero forcing number of Generalized Sierpinski graphs S(G, t). More precisely, we obtain a general lower bound on the Zero forcing number of S(G, t) and we show that this bound is tight. In particular, we consider the cases in which the base graph G is a star, path, a cycle or a complete graph.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [11] The Zero Forcing Number of Graphs with the Matching Number and the Cyclomatic Number
    Jing, Yu
    Zhang, Wenqian
    Ji, Shengjin
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [12] The double Roman domination number of generalized Sierpinski graphs
    Anu, V
    Lakshmanan, S. Aparna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)
  • [13] On the zero forcing number of complementary prism graphs
    Raksha, M. R.
    Dominic, Charles
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [14] Zero forcing number of fuzzy graphs with application
    Karbasioun, Asefeh
    Ameri, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3873 - 3882
  • [15] On the zero forcing number and spectral radius of graphs
    Zhang, Wenqian
    Wang, Jianfeng
    Wang, Weifan
    Ji, Shengjin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [16] All Graphs with a Failed Zero Forcing Number of Two
    Gomez, Luis
    Rubi, Karla
    Terrazas, Jorden
    Narayan, Darren A.
    SYMMETRY-BASEL, 2021, 13 (11):
  • [17] On the zero forcing number and propagation time of oriented graphs
    Hayat, Sakander
    Siddiqui, Hafiz Muhammad Afzal
    Imran, Muhammad
    Ikhlaq, Hafiz Muhammad
    Cao, Jinde
    AIMS MATHEMATICS, 2021, 6 (02): : 1833 - 1850
  • [18] Zero forcing number for Cartesian product of some graphs
    Montazeri, Zeinab
    Soltankhah, Nasrin
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (04) : 635 - 646
  • [19] ON GENERALIZED SIERPINSKI GRAPHS
    Alberto Rodriguez-Velazquez, Juan
    David Rodriguez-Bazan, Erick
    Estrada-Moreno, Alejandro
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 547 - 560
  • [20] On the zero forcing number of the complement of graphs with forbidden subgraphs
    Curl, Emelie
    Fallat, Shaun
    Moruzzi Jr, Ryan
    Reinhart, Carolyn
    Young, Derek
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 703 : 187 - 207