ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS

被引:3
作者
Vatandoost, Ebrahim [1 ]
Ramezani, Fatemeh [2 ]
Alikhani, Saeid [2 ]
机构
[1] Imam Khomeini Int Univ, Dept Basic Sci, Qazvin, Iran
[2] Yazd Univ, Dept Math, POB 89195-741, Yazd, Iran
关键词
Zero forcing number; generalized Sierpinski graph; Sierpinski graph; path covering; MINIMUM RANK; DIMENSION; CODES; SETS;
D O I
10.22108/toc.2018.101107.1463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the Zero forcing number of Generalized Sierpinski graphs S(G, t). More precisely, we obtain a general lower bound on the Zero forcing number of S(G, t) and we show that this bound is tight. In particular, we consider the cases in which the base graph G is a star, path, a cycle or a complete graph.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 18 条
  • [1] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [2] Zero forcing parameters and minimum rank problems
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) : 401 - 411
  • [3] Generalized Power Domination: Propagation Radius and SierpiA"ski Graphs
    Dorbec, Paul
    Klavzar, Sandi
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 75 - 86
  • [4] Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph
    Edholm, Christina J.
    Hogben, Leslie
    My Huynh
    LaGrange, Joshua
    Row, Darren D.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4352 - 4372
  • [5] A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs
    Eroh, Linda
    Kang, Cong X.
    Yi, Eunjeong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 731 - 747
  • [6] Estaji E, 2017, ARS MATH CONTEMP, V12, P127
  • [7] Estrada-Moreno A., 2018, DISCRETE APPL MATH, P1
  • [8] Geetha J, 2015, AUSTRALAS J COMB, V63, P58
  • [9] Gravier S., 2011, EUROCOMB11
  • [10] New results on variants of covering codes in SierpiA"ski graphs
    Gravier, Sylvain
    Kovse, Matjaz
    Mollard, Michel
    Moncel, Julien
    Parreau, Aline
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (02) : 181 - 188