Many-body echo

被引:25
作者
Chen, Yang-Yang [1 ,2 ,3 ]
Zhang, Pengfei [4 ]
Zheng, Wei [5 ,6 ]
Wu, Zhigang [1 ,2 ]
Zhai, Hui [4 ,7 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[6] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[7] Peng Cheng Lab, Ctr Quantum Comp, Shenzhen 518055, Peoples R China
基金
中国博士后科学基金;
关键词
MATTER-WAVE JETS; QUANTUM SIMULATION; MODEL;
D O I
10.1103/PhysRevA.102.011301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Rapid Communication, we propose a protocol to reverse a quantum many-body dynamic process. We name it "many-body echo" because the underlying physics is closely related to the spin echo effect in nuclear magnetic resonance systems. We consider a periodical modulation of the interaction strength in a weakly interacting Bose condensate, which resonantly excites quasiparticles from the condensate. A dramatic phenomenon is that, after pausing the interaction modulation for half a period and then continuing on with the same modulation, nearly all the excited quasiparticles in the resonance modes will be absorbed back into the condensate. During the intermediate half-period, the free evolution introduces a pi phase, which plays a role reminiscent of that played by the pi pulse in the spin echo. Comparing our protocol with another one implemented by the Chicago group in a recent experiment, we find that ours is more effective at reversing the many-body process. The difference between these two schemes manifests the physical effect of the micromotion in the Floquet theory.
引用
收藏
页数:5
相关论文
共 42 条
[21]   Quantum simulation of Unruh radiation [J].
Hu, Jiazhong ;
Feng, Lei ;
Zhang, Zhendong ;
Chin, Cheng .
NATURE PHYSICS, 2019, 15 (08) :785-+
[22]   Experimental realization of the topological Haldane model with ultracold fermions [J].
Jotzu, Gregor ;
Messer, Michael ;
Desbuquois, Remi ;
Lebrat, Martin ;
Uehlinger, Thomas ;
Greif, Daniel ;
Esslinger, Tilman .
NATURE, 2014, 515 (7526) :237-U191
[23]  
Kennedy CJ, 2015, NAT PHYS, V11, P859, DOI [10.1038/NPHYS3421, 10.1038/nphys3421]
[24]   Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels [J].
Kitagawa, Takuya ;
Oka, Takashi ;
Brataas, Arne ;
Fu, Liang ;
Demler, Eugene .
PHYSICAL REVIEW B, 2011, 84 (23)
[25]   Floquet topological insulator in semiconductor quantum wells [J].
Lindner, Netanel H. ;
Refael, Gil ;
Galitski, Victor .
NATURE PHYSICS, 2011, 7 (06) :490-495
[26]   APPLICATION OF AVERAGE HAMILTONIAN THEORY TO THE NMR OF SOLIDS [J].
MARICQ, MM .
PHYSICAL REVIEW B, 1982, 25 (11) :6622-6632
[27]   Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices [J].
Miyake, Hirokazu ;
Siviloglou, Georgios A. ;
Kennedy, Colin J. ;
Burton, William Cody ;
Ketterle, Wolfgang .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[28]   Parametric Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation [J].
Nguyen, J. H., V ;
Tsatsos, M. C. ;
Luo, D. ;
Lode, A. U. J. ;
Telles, G. D. ;
Bagnato, V. S. ;
Hulet, R. G. .
PHYSICAL REVIEW X, 2019, 9 (01)
[29]   Photovoltaic Hall effect in graphene [J].
Oka, Takashi ;
Aoki, Hideo .
PHYSICAL REVIEW B, 2009, 79 (08)
[30]   Does gravity come from quantum information? [J].
Qi, Xiao-Liang .
NATURE PHYSICS, 2018, 14 (10) :984-987