共 50 条
Many-body echo
被引:23
|作者:
Chen, Yang-Yang
[1
,2
,3
]
Zhang, Pengfei
[4
]
Zheng, Wei
[5
,6
]
Wu, Zhigang
[1
,2
]
Zhai, Hui
[4
,7
]
机构:
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[6] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[7] Peng Cheng Lab, Ctr Quantum Comp, Shenzhen 518055, Peoples R China
基金:
中国博士后科学基金;
关键词:
MATTER-WAVE JETS;
QUANTUM SIMULATION;
MODEL;
D O I:
10.1103/PhysRevA.102.011301
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
In this Rapid Communication, we propose a protocol to reverse a quantum many-body dynamic process. We name it "many-body echo" because the underlying physics is closely related to the spin echo effect in nuclear magnetic resonance systems. We consider a periodical modulation of the interaction strength in a weakly interacting Bose condensate, which resonantly excites quasiparticles from the condensate. A dramatic phenomenon is that, after pausing the interaction modulation for half a period and then continuing on with the same modulation, nearly all the excited quasiparticles in the resonance modes will be absorbed back into the condensate. During the intermediate half-period, the free evolution introduces a pi phase, which plays a role reminiscent of that played by the pi pulse in the spin echo. Comparing our protocol with another one implemented by the Chicago group in a recent experiment, we find that ours is more effective at reversing the many-body process. The difference between these two schemes manifests the physical effect of the micromotion in the Floquet theory.
引用
收藏
页数:5
相关论文