Many-body echo

被引:25
作者
Chen, Yang-Yang [1 ,2 ,3 ]
Zhang, Pengfei [4 ]
Zheng, Wei [5 ,6 ]
Wu, Zhigang [1 ,2 ]
Zhai, Hui [4 ,7 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[6] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[7] Peng Cheng Lab, Ctr Quantum Comp, Shenzhen 518055, Peoples R China
基金
中国博士后科学基金;
关键词
MATTER-WAVE JETS; QUANTUM SIMULATION; MODEL;
D O I
10.1103/PhysRevA.102.011301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Rapid Communication, we propose a protocol to reverse a quantum many-body dynamic process. We name it "many-body echo" because the underlying physics is closely related to the spin echo effect in nuclear magnetic resonance systems. We consider a periodical modulation of the interaction strength in a weakly interacting Bose condensate, which resonantly excites quasiparticles from the condensate. A dramatic phenomenon is that, after pausing the interaction modulation for half a period and then continuing on with the same modulation, nearly all the excited quasiparticles in the resonance modes will be absorbed back into the condensate. During the intermediate half-period, the free evolution introduces a pi phase, which plays a role reminiscent of that played by the pi pulse in the spin echo. Comparing our protocol with another one implemented by the Chicago group in a recent experiment, we find that ours is more effective at reversing the many-body process. The difference between these two schemes manifests the physical effect of the micromotion in the Floquet theory.
引用
收藏
页数:5
相关论文
共 42 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]   Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice [J].
Aidelsburger, M. ;
Atala, M. ;
Nascimbene, S. ;
Trotzky, S. ;
Chen, Y. -A. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[4]   Many-body localization and quantum thermalization [J].
Altman, Ehud .
NATURE PHYSICS, 2018, 14 (10) :979-983
[5]   Observation of chiral currents with ultracold atoms in bosonic ladders [J].
Atala, Marcos ;
Aidelsburger, Monika ;
Lohse, Michael ;
Barreiro, Julio T. ;
Paredes, Belen ;
Bloch, Immanuel .
NATURE PHYSICS, 2014, 10 (08) :588-593
[6]   Dynamic optical superlattices with topological bands [J].
Baur, Stefan K. ;
Schleier-Smith, Monika H. ;
Cooper, Nigel R. .
PHYSICAL REVIEW A, 2014, 89 (05)
[7]   EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS [J].
CARR, HY ;
PURCELL, EM .
PHYSICAL REVIEW, 1954, 94 (03) :630-638
[8]   Instability and depletion of an excited Bose-Einstein condensate in a trap [J].
Castin, Y ;
Dum, R .
PHYSICAL REVIEW LETTERS, 1997, 79 (19) :3553-3556
[9]   Floquet topological insulators [J].
Cayssol, Jerome ;
Dora, Balazs ;
Simon, Ferenc ;
Moessner, Roderich .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (1-2) :101-108
[10]   Observation of Density-Dependent Gauge Fields in a Bose-Einstein Condensate Based on Micromotion Control in a Shaken Two-Dimensional Lattice [J].
Clark, Logan W. ;
Anderson, Brandon M. ;
Feng, Lei ;
Gaj, Anita ;
Levin, K. ;
Chin, Cheng .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)