REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis

被引:213
作者
Zhang, Xufang [1 ]
Wang, Lei [1 ]
Sorensen, John Dalsgaard [2 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Liaoning, Peoples R China
[2] Aalborg Univ, Dept Civil Engn, DK-9220 Aalborg, Denmark
基金
中国国家自然科学基金;
关键词
Active-learning function; The folded-normal distribution; Kriging surrogate model; Low-discrepancy samples; Structural reliability analysis; SMALL FAILURE PROBABILITIES; ENTROPY; DIMENSIONS; REGIONS;
D O I
10.1016/j.ress.2019.01.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Structural reliability analysis is typically evaluated based on a multivariate function that describes underlying failure mechanisms of a structural system. It is necessary for a surrogate model to mimic the true performance function as the brute-force Monte-Carlo simulation is computationally intensive for rare failure probabilities. To this end, the paper presents an effective active-learning based Kriging method for structural reliability analysis. The reliability-based expected improvement function (REIF) is first derived based on the folded-normal distribution. To account for the modulating effect of the joint probability density function of input random variables on the scattering geometry of candidate samples, an improvement of the REIF active-learning function, i.e., the REIF2 is further presented. Then, the low-discrepancy samples and adaptively truncated sampling regions are combined together to initiate efficient active-learning iterations. The truncated sampling region is directly related to a structural failure probability result, rather than subjectively fixed by an analyst. Numerical validity of the proposed active-learning functions in conjunction with adaptively truncated sampling region and low-discrepancy samples is demonstrated by several structural reliability examples in the literature.
引用
收藏
页码:440 / 454
页数:15
相关论文
共 50 条
  • [21] System reliability analysis by combining structure function and active learning kriging model
    Yuan, Kai
    Xiao, Ning-Cong
    Wang, Zhonglai
    Shang, Kun
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 195
  • [22] AKOIS: An adaptive Kriging oriented importance sampling method for structural system reliability analysis
    Zhang, Xufang
    Wang, Lei
    Sorensen, John Dalsgaard
    STRUCTURAL SAFETY, 2020, 82
  • [23] A new adaptive analysis method based on the Kriging model for structural reliability analysis
    Wang, Tianzhe
    Li, Guofa
    Zhu, Haoming
    Chen, Zhongshi
    Wang, Xiaoye
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2024,
  • [24] Novel reliability evaluation method combining active learning kriging and adaptive weighted importance sampling
    Tang, Chenghu
    Zhang, Feng
    Zhang, Jianhua
    Lv, Yi
    Wang, Gangfeng
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (09)
  • [25] An active learning Kriging-based multipoint sampling strategy for structural reliability analysis
    Tian, Zongrui
    Zhi, Pengpeng
    Guan, Yi
    He, Xinghua
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (01) : 524 - 549
  • [26] Portfolio allocation strategy for active learning Kriging-based structural reliability analysis
    Hong, Linxiong
    Shang, Bin
    Li, Shizheng
    Li, Huacong
    Cheng, Jiaming
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 412
  • [27] An Efficient Subset Simulation based on the Active Learning Kriging model for Structural Reliability Analysis
    Li, Jingkui
    Wang, Bomin
    2020 3RD WORLD CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT MANUFACTURING (WCMEIM 2020), 2020, : 561 - 565
  • [28] LIF: A new Kriging based learning function and its application to structural reliability analysis
    Sun, Zhili
    Wang, Jian
    Li, Rui
    Tong, Cao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 157 : 152 - 165
  • [29] AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis
    Wang, Jinsheng
    Xu, Guoji
    Li, Yongle
    Kareem, Ahsan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 219
  • [30] AK-PDF: An active learning method combining kriging and probability density function for efficient reliability analysis
    Zhou, Chengning
    Xiao, Ning-Cong
    Zuo, Ming J.
    Huang, Xiaoxu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2020, 234 (03) : 536 - 549