Investigation of the reaction 74Ge(p,γ)75As using the in-beam method to improve reaction network predictions for p nuclei

被引:34
作者
Sauerwein, A. [1 ]
Endres, J. [1 ]
Netterdon, L. [1 ]
Zilges, A. [1 ]
Foteinou, V. [2 ]
Provatas, G. [2 ]
Konstantinopoulos, T. [2 ]
Axiotis, M. [2 ]
Ashley, S. F. [2 ]
Harissopulos, S. [2 ]
Rauscher, T. [3 ]
机构
[1] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany
[2] NCSR Demokritos, Inst Nucl Phys, Tandem Accelerator Lab, GR-15310 Athens, Greece
[3] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
来源
PHYSICAL REVIEW C | 2012年 / 86卷 / 03期
关键词
ASTROPHYSICAL REACTION-RATES; OPTICAL-MODEL; PROCESS NUCLEOSYNTHESIS; CROSS-SECTIONS; MASSIVE STARS; FINITE NUCLEI; RP-PROCESS; S-PROCESS; TEMPERATURE; SENSITIVITY;
D O I
10.1103/PhysRevC.86.035802
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Background: Astrophysical models studying the origin of the neutron-deficient p nuclides require knowledge of proton capture cross sections at low energy. The production site of the p nuclei is still under discussion but a firm basis of nuclear reaction rates is required to address the astrophysical uncertainties. Data at astrophysically relevant interaction energies are scarce. Problems with the prediction of charged particle capture cross sections at low energy were found in the comparisons between previous data and calculations in the Hauser-Feshbach statistical model of compound reactions. Purpose: A measurement of Ge-74(p,gamma)As-75 at low proton energies, inside the astrophysically relevant energy region, is important in several respects. The reaction is directly important because it is a bottleneck in the reaction flow which produces the lightest p nucleus Se-74. It is also an important addition to the data set required to test reaction-rate predictions and to allow an improvement in the global p + nucleus optical potential required in such calculations. Method: An in-beam experiment was performed, making it possible to measure in the range 2.1 <= E-p <= 3.7 MeV, which is for the most part inside the astrophysically relevant energy window. Angular distributions of the gamma-ray transitions were measured with high-purity germanium detectors at eight angles relative to the beam axis. In addition to the total cross sections, partial cross sections for the direct population of 12 levels were determined. Results: The resulting cross sections were compared to Hauser-Feshbach calculations using the code SMARAGD. Only a constant renormalization factor of the calculated proton widths allowed a good reproduction of both total and partial cross sections. The accuracy of the calculation made it possible to check the spin assignment of some states in As-75. In the case of the 1075-keV state, a double state with spins and parities of 3/2- and 5/2- is needed to explain the experimental partial cross sections. A change in parity from 5/2(+) to 5/2(-) is required for the state at 401 keV. Furthermore, in the case of Ge-74, studying the combination of total and partial cross sections made it possible to test the gamma width, which is essential in the calculation of the astrophysical As-74(n,gamma)As-75 rate. Conclusions: Between data and statistical model prediction a factor of about two was found. Nevertheless, the improved astrophysical reaction rate of Ge-74(p,gamma) (and its reverse reaction) is only 28% larger than the previous standard rate. The prediction of the As-74(n,gamma)As-75 rate (and its reverse) was confirmed, the newly calculated rate differs only by a few percent from the previous prediction. The in-beam method with high-efficiency detectors proved to be a powerful tool for studies in nuclear astrophysics and nuclear structure.
引用
收藏
页数:13
相关论文
共 66 条
  • [1] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [2] [Anonymous], 2006, NUCL PHYS NEWS
  • [3] ANTTILA A, 1977, NUCL INSTRUM METHODS, V147, P501, DOI 10.1016/0029-554X(77)90393-7
  • [4] Neutron capture in low-mass asymptotic giant branch stars:: Cross sections and abundance signatures
    Arlandini, C
    Käppeler, F
    Wisshak, K
    Gallino, R
    Lugaro, M
    Busso, M
    Straniero, O
    [J]. ASTROPHYSICAL JOURNAL, 1999, 525 (02) : 886 - 900
  • [5] The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status
    Arnould, A
    Goriely, S
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 384 (1-2): : 1 - 84
  • [6] The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries
    Arnould, M.
    Goriely, S.
    Takahashi, K.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 450 (4-6): : 97 - 213
  • [7] Lane-consistent, semimicroscopic nucleon-nucleus optical model
    Bauge, E
    Delaroche, JP
    Girod, M
    [J]. PHYSICAL REVIEW C, 2001, 63 (02): : 17
  • [8] Semimicroscopic nucleon-nucleus spherical optical model for nuclei with A≥40 at energies up to 200 MeV
    Bauge, E
    Delaroche, JP
    Girod, M
    [J]. PHYSICAL REVIEW C, 1998, 58 (02): : 1118 - 1145
  • [9] STUDY OF AS-71, AS-73, AS-75, AS-77 WITH GE(HE-3,D)REACTIONS
    BETTS, RR
    MORDECHAI, S
    PULLEN, DJ
    ROSNER, B
    SCHOLZ, W
    [J]. NUCLEAR PHYSICS A, 1974, A230 (02) : 235 - 252
  • [10] SYNTHESIS OF THE ELEMENTS IN STARS
    BURBIDGE, EM
    BURBIDGE, GR
    FOWLER, WA
    HOYLE, F
    [J]. REVIEWS OF MODERN PHYSICS, 1957, 29 (04) : 547 - 650