Implicit Euler approximation of stochastic evolution equations with fractional Brownian motion

被引:21
作者
Kamrani, Minoo [1 ,2 ]
Jamshidi, Nahid [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 44卷
关键词
Stochastic evolution equation; Fractional Brownian motion; Galerkin method; Implicit Euler scheme; DRIVEN;
D O I
10.1016/j.cnsns.2016.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work was intended as an attempt to motivate the approximation of quasi linear evolution equations driven by infinite-dimensional fractional Brownian motion with Hurst parameter H > 1/2. The spatial approximation method is based on Galerkin and the temporal approximation is based on implicit Euler scheme. An error bound and the convergence of the numerical method are given. The numerical results show usefulness and accuracy of the method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 19 条
[1]  
Alos E., 2003, STOCH STOCH REP, V75, P129, DOI DOI 10.1080/1045112031000078917
[2]   Stochastic integration with respect to fractional Brownian motion [J].
Carmona, P ;
Coutin, L ;
Montseny, G .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01) :27-68
[3]   Arbitrage in fractional Brownian motion models [J].
Cheridito, P .
FINANCE AND STOCHASTICS, 2003, 7 (04) :533-553
[4]   SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION [J].
Duncan, T. E. ;
Maslowski, B. ;
Pasik-Duncan, B. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) :2286-2315
[5]  
Duncan T.E., 2002, Stoch. Dyn., V2, P225, DOI [DOI 10.1142/S0219493702000340, 10.1142/S0219493702000340]
[6]   Stochastic integration for fractional Brownian motion in a Hilbert space [J].
Duncan, TE ;
Jakubowski, J ;
Pasik-Duncan, B .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :53-75
[7]   Ergodicity of stochastic differential equations driven by fractional Brownian motion [J].
Hairer, M .
ANNALS OF PROBABILITY, 2005, 33 (02) :703-758
[8]   Approximation for semilinear stochastic evolution equations [J].
Hausenblas, E .
POTENTIAL ANALYSIS, 2003, 18 (02) :141-186
[9]   Fractional white noise calculus and applications to finance [J].
Hu, YZ ;
Oksendal, B .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :1-32
[10]  
HURST HE, 1951, T AM SOC CIV ENG, V116, P770