A primal-dual interior point method for nonlinear semidefinite programming

被引:43
作者
Yamashita, Hiroshi [2 ]
Yabe, Hiroshi [1 ]
Harada, Kouhei [2 ]
机构
[1] Tokyo Univ Sci, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
[2] Math Syst Inc, Shinjuku Ku, Tokyo 1600022, Japan
基金
日本学术振兴会;
关键词
Nonlinear semidefinite programming; Primal-dual interior point method; Barrier penalty function; Primal-dual merit function; Global convergence; ROBUST-CONTROL; CONVERGENCE;
D O I
10.1007/s10107-011-0449-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper is concerned with a primal-dual interior point method for solving nonlinear semidefinite programming problems. The method consists of the outer iteration (SDPIP) that finds a KKT point and the inner iteration (SDPLS) that calculates an approximate barrier KKT point. Algorithm SDPLS uses a commutative class of Newton-like directions for the generation of line search directions. By combining the primal barrier penalty function and the primal-dual barrier function, a new primal-dual merit function is proposed. We prove the global convergence property of our method. Finally some numerical experiments are given.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
[41]   Improving the performance of primal-dual interior-point method in inverse conductivity problems [J].
Javaherian, Ashkan ;
Movafeghi, Amir ;
Faghihi, Reza ;
Yahaghi, Effat .
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2015, 23 (02) :459-479
[42]   Convergence conditions and Krylov subspace-based corrections for primal-dual interior-point method [J].
Mehrotra, S ;
Li, ZF .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) :635-653
[43]   A Globally and Superlinearly Convergent Primal-dual Interior Point Method for General Constrained Optimization [J].
Li, Jianling ;
Lv, Jian ;
Jian, Jinbao .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (03) :313-335
[44]   A new feasible descent primal-dual interior point algorithm for nonlinear inequality constrained optimization [J].
Jian, Jin-bao ;
Pan, Hua-qin .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (07) :1952-1963
[45]   LDLT DIRECTION INTERIOR POINT METHOD FOR SEMIDEFINITE PROGRAMMING [J].
Raghunathan, Arvind U. ;
Biegler, Lorenz T. .
SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) :693-734
[46]   Research on Spot Price Based on Predictor-corrector Primal-dual Interior Point Method [J].
Huang, Qincheng ;
Zhou, Yurong .
INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, :68-74
[47]   A primal-dual interior point method to implicitly update Gurson-Tvergaard-Needleman model [J].
Shintaku, Yuichi ;
Inaoka, Tatsuhiko ;
Terada, Kenjiro .
COMPUTATIONAL MECHANICS, 2024, 74 (05) :1037-1054
[48]   A Derivative-Free Regularized Primal-Dual Interior-Point Algorithm for Constrained Nonlinear Least Squares Problems [J].
Chen, Xi ;
Fan, Jinyan .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)
[49]   DC-based security constraints formulation: A perspective of primal-dual interior point method [J].
Bao, Zhiyuan ;
Wan, Yujian ;
Hu, Zechun ;
Mujeeb, Asad .
ELECTRIC POWER SYSTEMS RESEARCH, 2024, 228
[50]   A dynamic large-update primal-dual interior-point method for linear optimization [J].
Peng, JM ;
Terlaky, T .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (06) :1077-1104