A primal-dual interior point method for nonlinear semidefinite programming

被引:42
作者
Yamashita, Hiroshi [2 ]
Yabe, Hiroshi [1 ]
Harada, Kouhei [2 ]
机构
[1] Tokyo Univ Sci, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
[2] Math Syst Inc, Shinjuku Ku, Tokyo 1600022, Japan
基金
日本学术振兴会;
关键词
Nonlinear semidefinite programming; Primal-dual interior point method; Barrier penalty function; Primal-dual merit function; Global convergence; ROBUST-CONTROL; CONVERGENCE;
D O I
10.1007/s10107-011-0449-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper is concerned with a primal-dual interior point method for solving nonlinear semidefinite programming problems. The method consists of the outer iteration (SDPIP) that finds a KKT point and the inner iteration (SDPLS) that calculates an approximate barrier KKT point. Algorithm SDPLS uses a commutative class of Newton-like directions for the generation of line search directions. By combining the primal barrier penalty function and the primal-dual barrier function, a new primal-dual merit function is proposed. We prove the global convergence property of our method. Finally some numerical experiments are given.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
[21]   A new wide neighbourhood primal-dual interior-point algorithm for semidefinite optimization [J].
Kheirfam, B. .
OPTIMIZATION, 2019, 68 (12) :2243-2263
[22]   Quadratic convergence of a primal-dual interior point method for degenerate nonlinear optimization problems [J].
Yamashita, H ;
Yabe, H .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (02) :123-143
[23]   PRIMAL-DUAL INTERIOR POINT MULTIGRID METHOD FOR TOPOLOGY OPTIMIZATION [J].
Kocvara, Michal ;
Mohammed, Sudaba .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :B685-B709
[24]   A PRIMAL-DUAL EXTERIOR POINT METHOD WITH A PRIMAL-DUAL QUADRATIC PENALTY FUNCTION FOR NONLINEAR OPTIMIZATION [J].
Igarashi, Yu ;
Yabe, Hiroshi .
PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (04) :721-736
[25]   A robust primal-dual interior-point algorithm for nonlinear programs [J].
Liu, XW ;
Sun, J .
SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (04) :1163-1186
[26]   A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion [J].
Nakata, K ;
Yamashita, M ;
Fujisawa, K ;
Kojima, M .
PARALLEL COMPUTING, 2006, 32 (01) :24-43
[27]   On a wide region of centers and primal-dual interior point algorithms for linear programming [J].
Sturm, JF ;
Zhang, SZ .
MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (02) :408-431
[28]   A new primal-dual path-following interior-point algorithm for semidefinite optimization [J].
Wang, G. Q. ;
Bai, Y. Q. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) :339-349
[29]   A PRIMAL-DUAL INTERIOR-POINT METHOD CAPABLE OF RAPIDLY DETECTING INFEASIBILITY FOR NONLINEAR PROGRAMS [J].
Dai, Yu-Hong ;
Liu, Xin-Wei ;
Sun, Jie .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (02) :1009-1035
[30]   ADVANCED PRIMAL-DUAL INTERIOR-POINT METHOD FOR THE METHOD OF MOVING ASYMPTOTES [J].
Li, Daozhong ;
Roper, Stephen ;
Kim, Il Yong .
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 1A, 2018,