A primal-dual interior point method for nonlinear semidefinite programming

被引:43
作者
Yamashita, Hiroshi [2 ]
Yabe, Hiroshi [1 ]
Harada, Kouhei [2 ]
机构
[1] Tokyo Univ Sci, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
[2] Math Syst Inc, Shinjuku Ku, Tokyo 1600022, Japan
基金
日本学术振兴会;
关键词
Nonlinear semidefinite programming; Primal-dual interior point method; Barrier penalty function; Primal-dual merit function; Global convergence; ROBUST-CONTROL; CONVERGENCE;
D O I
10.1007/s10107-011-0449-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper is concerned with a primal-dual interior point method for solving nonlinear semidefinite programming problems. The method consists of the outer iteration (SDPIP) that finds a KKT point and the inner iteration (SDPLS) that calculates an approximate barrier KKT point. Algorithm SDPLS uses a commutative class of Newton-like directions for the generation of line search directions. By combining the primal barrier penalty function and the primal-dual barrier function, a new primal-dual merit function is proposed. We prove the global convergence property of our method. Finally some numerical experiments are given.
引用
收藏
页码:89 / 121
页数:33
相关论文
共 50 条
[1]   A primal-dual interior point trust-region method for nonlinear semidefinite programming [J].
Yamashita, Hiroshi ;
Yabe, Hiroshi ;
Harada, Kouhei .
OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (2-3) :569-601
[2]   An interior point method with a primal-dual quadratic barrier penalty function for nonlinear semidefinite programming [J].
Kato, Atsushi ;
Yabe, Hiroshi ;
Yamashita, Hiroshi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 :148-161
[3]   Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming [J].
Yamashita, Hiroshi ;
Yabe, Hiroshi .
MATHEMATICAL PROGRAMMING, 2012, 132 (1-2) :1-30
[4]   A Primal-Dual Interior-Point Filter Method for Nonlinear Semidefinite Programming [J].
Liu, Zhong-Yi ;
Sun, Wen-Yu .
OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2008, 8 :112-+
[5]   A primal–dual interior point method for nonlinear semidefinite programming [J].
Hiroshi Yamashita ;
Hiroshi Yabe ;
Kouhei Harada .
Mathematical Programming, 2012, 135 :89-121
[6]   Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming [J].
Hiroshi Yamashita ;
Hiroshi Yabe .
Mathematical Programming, 2012, 132 :1-30
[7]   Convergence to a second-order critical point by a primal-dual interior point trust-region method for nonlinear semidefinite programming [J].
Yamashita, Hiroshi .
OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (06) :2190-2224
[8]   A feasible primal-dual interior point method for linear semidefinite programming [J].
Touil, Imene ;
Benterki, Djamel ;
Yassine, Adnan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 :216-230
[9]   A NEW EFFICIENT PRIMAL-DUAL PROJECTIVE INTERIOR POINT METHOD FOR SEMIDEFINITE PROGRAMMING [J].
Amina, Zerari ;
Djamel, Benterki .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
[10]   IPRSDP: a primal-dual interior-point relaxation algorithm for semidefinite programming [J].
Zhang, Rui-Jin ;
Liu, Xin-Wei ;
Dai, Yu-Hong .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (01) :1-36