Highly radiative shock experiments driven by GEKKO XII

被引:15
作者
Diziere, A. [1 ]
Michaut, C. [2 ]
Koenig, M. [1 ]
Gregory, C. D. [1 ]
Ravasio, A. [1 ]
Sakawa, Y. [3 ]
Kuramitsu, Y. [3 ]
Morita, T. [3 ]
Ide, T. [3 ]
Tanji, H. [3 ]
Takabe, H. [3 ]
Barroso, P. [4 ]
Boudenne, J. -M. [1 ]
机构
[1] Univ Paris 06, LULI, Ecole Polytech, CNRS, F-91128 Palaiseau, France
[2] Univ Paris Diderot, LUTH, Observ Paris, CNRS, F-92190 Meudon, France
[3] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan
[4] Univ Paris Diderot, GEPI, Observ Paris, CNRS, F-92190 Meudon, France
关键词
Radiative shock; High-power laser; Shock wave; Plasmas; Hydrodynamics; TEMPERATURE;
D O I
10.1007/s10509-011-0653-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, recent results obtained on highly radiative shocks generated in a xenon filled gas cell using the GEKKO XII laser facility are presented. Data show extremely high shock velocity (a parts per thousand yen150 km/s) never achieved before in gas. Preliminary analyses based on theoretical dimensionless numbers and numerical simulations suggest that these radiative shocks reach a new radiative regime where the radiative pressure plays a role in the dynamics and structure of the shock. A major effect observed is a strong anisotropic emission in the downstream gas. This unexpected feature is discussed and compared to available 2D radiation hydrodynamic simulations.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [21] On characterization of shock propagation and radiative preheating in x-ray driven high-density carbon foils
    Mishra, Gaurav
    Ghosh, Karabi
    PHYSICS OF PLASMAS, 2023, 30 (04)
  • [22] Particle evaporation and hydrodynamics in a shock driven multiphase instability
    Paudel, Manoj
    Dahal, Jeevan
    McFarland, Jacob
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2018, 101 : 137 - 151
  • [23] Radiative Characteristics of Shock-Heated Oxygen
    Zabelinsky, I. E.
    Bikova, N. G.
    Kozlov, P., V
    Levashov, V. Yu
    Gerasimov, G. Ya
    JOURNAL OF APPLIED SPECTROSCOPY, 2022, 89 (01) : 56 - 59
  • [24] Developing a radiative shock experiment relevant to astrophysics
    Shigemori, K
    Ditmire, T
    Remington, BA
    Yanovsky, V
    Ryutov, D
    Estabrook, KG
    Edwards, MJ
    MacKinnon, AJ
    Rubenchik, AM
    Keilty, KA
    Liang, E
    ASTROPHYSICAL JOURNAL, 2000, 533 (02) : L159 - L162
  • [25] Simulating radiative shocks in nozzle shock tubes
    van der Holst, B.
    Toth, G.
    Sokolov, I. V.
    Daldorff, L. K. S.
    Powell, K. G.
    Drake, R. P.
    HIGH ENERGY DENSITY PHYSICS, 2012, 8 (02) : 161 - 169
  • [26] Early-time evolution of a radiative shock
    Kuranz, C. C.
    Drake, R. P.
    Huntington, C. M.
    Krauland, C. M.
    Di Stefano, C. A.
    Trantham, M.
    Grosskopf, M. J.
    Klein, S. R.
    Marion, D. C.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (02) : 315 - 318
  • [27] Analytical study and structure of a stationary radiative shock
    Bouquet, S
    Teyssier, R
    Chieze, JP
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2000, 127 (02) : 245 - 252
  • [28] Magnetohydrodynamic simulations of shock interactions with radiative clouds
    Fragile, PC
    Anninos, P
    Gustafson, K
    Murray, SD
    ASTROPHYSICAL JOURNAL, 2005, 619 (01) : 327 - 339
  • [29] The instability of a radiative shock wave in a magnetic field
    Gasilov V.A.
    Koldoba A.V.
    Ustyugova G.V.
    Mathematical Models and Computer Simulations, 2011, 3 (1) : 81 - 91
  • [30] Radiative shock solutions in the equilibrium diffusion limit
    Lowrie, Robert B.
    Rauenzahn, Rick M.
    SHOCK WAVES, 2007, 16 (06) : 445 - 453