Estimation of grassland biomass and nitrogen using MERIS data

被引:83
|
作者
Ullah, Saleem [1 ]
Si, Yali [2 ,3 ]
Schlerf, Martin [4 ]
Skidmore, Andrew K. [1 ]
Shafique, Muhammad [5 ]
Iqbal, Irfan Akhtar [6 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AA Enschede, Netherlands
[2] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China
[4] CRPGL, L-4422 Belvaux, Luxembourg
[5] Univ Peshawar, NCEG, Peshawar, Pakistan
[6] Pakistan Space & Upper Atmosphere Res Commiss SUP, Karachi 75270, Pakistan
关键词
Quantifying biomass; Nitrogen concentration; and nitrogen density; Vegetation indices; Band depth analysis parameters; BAND-DEPTH ANALYSIS; RED-EDGE; VEGETATION INDEXES; ABOVEGROUND BIOMASS; BROAD-BAND; QUALITY; COVER; SHIFT; NDVI; AREA;
D O I
10.1016/j.jag.2012.05.008
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R-2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m(-2) (using an independent validation dataset, n=30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m(-2)). Nitrogen density was also best predicted by NBDI and yielded a calibration R-2 of 0.51 and a RMSE of 4.2 g m(-2) compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m(-2)). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R-2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P>0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 204
页数:9
相关论文
共 50 条
  • [21] Estimation of Above-ground Biomass Carbon Storage in Hulunbeier Grassland based on Remotely Sensed Data
    Hasituya
    Chen Zhong-xin
    Wu Wen-bin
    Huang, Qing
    2015 FOURTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2015,
  • [22] Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation
    Zhang, Binghua
    Zhang, Li
    Xie, Dong
    Yin, Xiaoli
    Liu, Chunjing
    Liu, Guang
    REMOTE SENSING, 2016, 8 (01)
  • [23] Estimation of grassland aboveground biomass in northern China based on topography-climate-remote sensing data
    Yao, Yuwei
    Ren, Hongrui
    ECOLOGICAL INDICATORS, 2024, 165
  • [24] Regional products for the Baltic Sea using MERIS data
    Krawczyk, H.
    Neumann, A.
    Gerasch, B.
    Walzel, T.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (3-4) : 593 - 608
  • [25] Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle
    Zhang, Huifang
    Sun, Yi
    Chang, Li
    Qin, Yu
    Chen, Jianjun
    Qin, Yan
    Du, Jiaxing
    Yi, Shuhua
    Wang, Yingli
    REMOTE SENSING, 2018, 10 (06)
  • [26] Estimation of Grassland Green Biomass Using Sentinel-1A SLC Image Spectral Characteristics
    Luo Sen
    Ren Hong-rui
    Zhang Yue-qi
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (03) : 955 - 961
  • [27] Modeling forest productivity using envisat MERIS data
    Berberoglu, Suha
    Evrendilek, Fatih
    Ozkan, Coskun
    Donmez, Cenk
    SENSORS, 2007, 7 (10) : 2115 - 2127
  • [28] ESTIMATING GRASSLAND BIOMASS AND LEAF-AREA INDEX USING GROUND AND SATELLITE DATA
    FRIEDL, MA
    MICHAELSEN, J
    DAVIS, FW
    WALKER, H
    SCHIMEL, DS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (07) : 1401 - 1420
  • [29] Bathymetric estimation using MERIS images in coastal sea waters
    Minghelli-Roman, Audrey
    Polidori, Laurent
    Mathieu, Sandrine
    Loubersac, Lionel
    Cauneau, Francois
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (02) : 274 - 277
  • [30] Methods for LiDAR-based estimation of extensive grassland biomass
    Schulze-Brueninghoff, Damian
    Hensgen, Frank
    Wachendorf, Michael
    Astor, Thomas
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 156 : 693 - 699