On the second Zagreb eccentricity indices of graphs

被引:12
作者
Li, Jianping [1 ]
Zhang, Jianbin [2 ]
机构
[1] Guangdong Univ Technol, Fac Appl Math, Guangzhou 510090, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Zagreb eccentricity index; Second Zagreb eccentricity index; Bicyclic graphs; Eccentricity; MOLECULAR-ORBITALS;
D O I
10.1016/j.amc.2019.01.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected graph G, the second Zagreb eccentricity index of G is defined as xi(2)(G) = Sigma(uv)(is an element of E(G)) e(G)(u)e(G)(v), where e(G)(u) denotes the eccentricity of u in G. In this paper, we give a graft transformation to increase the second Zagreb eccentricity indices of graphs, and as applications, we determine n-vertex bicyclic graphs with maximum and second maximum second Zagreb eccentricity indices, respectively. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 187
页数:8
相关论文
共 11 条
[1]  
Das KC, 2013, ARS MATH CONTEMP, V6, P117
[2]   Extremal Properties of the Zagreb Eccentricity Indices [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
CROATICA CHEMICA ACTA, 2012, 85 (03) :359-362
[3]   GRAPH THEORY AND MOLECULAR-ORBITALS - TOTAL PI-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS [J].
GUTMAN, I ;
TRINAJSTIC, N .
CHEMICAL PHYSICS LETTERS, 1972, 17 (04) :535-538
[4]   GRAPH THEORY AND MOLECULAR-ORBITALS .12. ACYCLIC POLYENES [J].
GUTMAN, I ;
RUSCIC, B ;
TRINAJSTIC, N ;
WILCOX, CF .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (09) :3399-3405
[5]  
Ma YD, 2018, MATCH-COMMUN MATH CO, V80, P85
[6]   Zagreb eccentricity indices of unicyclic graphs [J].
Qi, Xuli ;
Zhou, Bo ;
Li, Jiyong .
DISCRETE APPLIED MATHEMATICS, 2017, 233 :166-174
[7]  
Qi XL, 2017, MATCH-COMMUN MATH CO, V78, P241
[8]  
Todeschini R., 2008, Handbook of molecular descriptors
[9]  
Vukicevic D, 2010, ACTA CHIM SLOV, V57, P524
[10]   On Zagreb Eccentricity Indices [J].
Xing, Rundan ;
Zhou, Bo ;
Trinajstic, Nenad .
CROATICA CHEMICA ACTA, 2011, 84 (04) :493-497