On the sequence of consecutive powers of a matrix in a Boolean algebra

被引:19
作者
De Schutter, B
De Moor, B
机构
[1] Delft Univ Technol, Fac Informat Technol & Syst, Lab Control Engn, NL-2600 GA Delft, Netherlands
[2] Katholieke Univ Leuven, ESAT, SISTA, B-3001 Heverlee, Belgium
关键词
Boolean algebra; Boolean matrices; transient behavior; Markov chains; max-plus algebra;
D O I
10.1137/S0895479897326079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the sequence of consecutive powers of a matrix in a Boolean algebra. We characterize the ultimate behavior of this sequence, we study the transient part of the sequence, and we derive upper bounds for the length of this transient part. We also indicate how these results can be used in the analysis of Markov chains and in max-plus algebraic system theory for discrete event systems.
引用
收藏
页码:328 / 354
页数:27
相关论文
共 27 条
[1]  
[Anonymous], 1962, NUMERISCHE MATH
[2]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[3]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[4]   THE POWER ALGORITHM IN MAX ALGEBRA [J].
BRAKER, JG ;
OLSDER, GJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 182 :67-89
[5]   On a problem of partitions [J].
Brauer, A .
AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 :299-312
[6]  
Brualdi RA, 1991, ENCY MATH ITS APPL, V39
[7]  
CASSANDRAS CG, 1995, TRENDS IN CONTROL, P217
[8]   A LINEAR-SYSTEM-THEORETIC VIEW OF DISCRETE-EVENT PROCESSES AND ITS USE FOR PERFORMANCE EVALUATION IN MANUFACTURING [J].
COHEN, G ;
DUBOIS, D ;
QUADRAT, JP ;
VIOT, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :210-220
[9]  
Cuninghame-Green RA., 1979, Minimax Algebra
[10]  
De Schutter B, 1998, SYST CONTROL LETT, V35, P69, DOI 10.1016/S0167-6911(98)00035-8