Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data

被引:60
作者
Liu, Ke [1 ,2 ]
Newbury, Patrick A. [1 ,2 ]
Glicksberg, Benjamin S. [3 ]
Zeng, William Z. D. [3 ]
Paithankar, Shreya [4 ]
Andrechek, Eran R. [5 ]
Chen, Bin [1 ,2 ]
机构
[1] Michigan State Univ, Dept Pediat & Human Dev, Coll Human Med, Grand Rapids, MI 49503 USA
[2] Michigan State Univ, Dept Pharmacol & Toxicol, Coll Human Med, Grand Rapids, MI 49503 USA
[3] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94158 USA
[4] Grand Valley State Univ, Hlth Informat & Bioinformat, Sch Comp & Informat Syst, Grand Rapids, MI 49504 USA
[5] Michigan State Univ, Dept Physiol, E Lansing, MI 48824 USA
关键词
GENE-EXPRESSION; DISCOVERY; SIGNATURES; MUTATION;
D O I
10.1038/s41467-019-10148-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell lines are widely-used models to study metastatic cancer although the extent to which they recapitulate the disease in patients remains unknown. The recent accumulation of genomic data provides an unprecedented opportunity to evaluate the utility of them for metastatic cancer research. Here, we reveal substantial genomic differences between breast cancer cell lines and metastatic breast cancer patient samples. We also identify cell lines that more closely resemble the different subtypes of metastatic breast cancer seen in the clinic and show that surprisingly, MDA-MB-231 cells bear little genomic similarities to basal-like metastatic breast cancer patient samples. Further comparison suggests that organoids more closely resemble the transcriptome of metastatic breast cancer samples compared to cell lines. Our work provides a guide for cell line selection in the context of breast cancer metastasis and highlights the potential of organoids in these studies.
引用
收藏
页数:12
相关论文
共 49 条
[1]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity (vol 483, pg 603, 2012) [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 492 (7428) :290-290
[2]   Estrogen receptor (ESR1) mutation in bone metastases from breast cancer [J].
Bartels, Stephan ;
Christgen, Matthias ;
Luft, Angelina ;
Persing, Sascha ;
Joedecke, Kai ;
Lehmann, Ulrich ;
Kreipe, Hans .
MODERN PATHOLOGY, 2018, 31 (01) :56-61
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Human primary liver cancer-derived organoid cultures for disease modeling and drug screening [J].
Broutier, Laura ;
Mastrogiovanni, Gianmarco ;
Verstegen, Monique M. A. ;
Francies, Hayley E. ;
Gavarro, Lena Morrill ;
Bradshaw, Charles R. ;
Allen, George E. ;
Arnes-Benito, Robert ;
Sidorova, Olga ;
Gaspersz, Marcia P. ;
Georgakopoulos, Nikitas ;
Koo, Bon-Kyoung ;
Dietmann, Sabine ;
Davies, Susan E. ;
Praseedom, Raaj K. ;
Lieshout, Ruby ;
IJzermans, Jan N. M. ;
Wigmore, Stephen J. ;
Saeb-Parsy, Kourosh ;
Garnett, Mathew J. ;
van der Laan, Luc J. W. ;
Huch, Meritxell .
NATURE MEDICINE, 2017, 23 (12) :1424-+
[5]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[6]   Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets [J].
Chen, Bin ;
Ma, Li ;
Paik, Hyojung ;
Sirota, Marina ;
Wei, Wei ;
Chua, Mei-Sze ;
So, Samuel ;
Butte, Atul J. .
NATURE COMMUNICATIONS, 2017, 8
[7]   Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling [J].
Chen, Bin ;
Wei, Wei ;
Ma, Li ;
Yang, Bin ;
Gill, Ryan M. ;
Chua, Mei-Sze ;
Butte, Atul J. ;
So, Samuel .
GASTROENTEROLOGY, 2017, 152 (08) :2022-2036
[8]   Relating hepatocellular carcinoma tumor samples and cell lines using gene expression data in translational research [J].
Chen, Bin ;
Sirota, Marina ;
Fan-Minogue, Hua ;
Hadley, Dexter ;
Butte, Atul J. .
BMC MEDICAL GENOMICS, 2015, 8
[9]   Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples [J].
Cibulskis, Kristian ;
Lawrence, Michael S. ;
Carter, Scott L. ;
Sivachenko, Andrey ;
Jaffe, David ;
Sougnez, Carrie ;
Gabriel, Stacey ;
Meyerson, Matthew ;
Lander, Eric S. ;
Getz, Gad .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :213-219
[10]   Evaluating cell lines as tumour models by comparison of genomic profiles [J].
Domcke, Silvia ;
Sinha, Rileen ;
Levine, Douglas A. ;
Sander, Chris ;
Schultz, Nikolaus .
NATURE COMMUNICATIONS, 2013, 4