Extrusion temperature impacts on biometallic Mg-2.0Zn-0.5Zr-3.0Gd (wt%) solid-solution alloy

被引:25
作者
Yao, Huai [1 ,2 ]
Wen, Jiuba [1 ,2 ]
Xiong, Yi [1 ,2 ]
Lu, Yan [1 ]
Ren, Fengzhang [1 ,2 ]
Cao, Wei [3 ,4 ]
机构
[1] Henan Univ Sci & Technol, Sch Mat Sci & Engn, Luoyang 471023, Henan, Peoples R China
[2] Collaborat Innovat Ctr Nonferrous Met Henan Prov, Luoyang 471023, Henan, Peoples R China
[3] Univ Oulu, Nano & Mol Syst Res Unit, FIN-90014 Oulu, Finland
[4] Anhui Polytech Univ, Sch Mech & Automot Engn, Wuhu 241000, Peoples R China
关键词
Magnesium alloys; Microstructure; Mechanical properties; Corrosion; Extrusion; ZN-ZR ALLOY; IN-VITRO CORROSION; MECHANICAL-PROPERTIES; MG ALLOY; BIOCORROSION BEHAVIOR; RINGERS SOLUTION; MAGNESIUM ALLOY; HEAT-TREATMENT; HIGH-STRENGTH; MICROSTRUCTURE;
D O I
10.1016/j.jallcom.2017.12.225
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To obtain ideal implant materials, we hot extruded Mg-2.0Zn-0.5Zr-3.0Gd solid-solution alloys, and studied extrusion temperature impacts on materials properties. Fine dynamic recrystallized (DRXed) grains (similar to 5 mu m) and elongated coarse un-dynamic recrystallized (unDRXed) deformed grains turned out at the range of 470-490 degrees C, but changed to bigger ones (similar to 8 mu m) and abnormal growth (30-40 mu m) at 490 -510 degrees C. Precipitated phases consist of rod-like (Mg, Zn)(3)Gd particles and newly precipitated Mg2Zn11 rectangles. The alloy extruded at 490 degrees C meets all mechanical and anticorrosive requirements for biomaterials, thanks to evenly distributed second phases via the solid solution, and the grain refinements through the hot extrusion. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:468 / 480
页数:13
相关论文
共 53 条
  • [1] Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium
    Argade, G. R.
    Panigrahi, S. K.
    Mishra, R. S.
    [J]. CORROSION SCIENCE, 2012, 58 : 145 - 151
  • [2] An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The effect of electrolyte renewal
    Ascencio, M.
    Pekguleryuz, M.
    Omanovic, S.
    [J]. CORROSION SCIENCE, 2015, 91 : 297 - 310
  • [3] Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy
    Aung, Naing Naing
    Zhou, Wei
    [J]. CORROSION SCIENCE, 2010, 52 (02) : 589 - 594
  • [4] Role of alloyed Y in improving the corrosion resistance of extruded Mg-Al-Ca-based alloy
    Baek, Soo-Min
    Kang, Jeong Su
    Shin, Hyung-Joon
    Yim, Chang Dong
    You, Bong Sun
    Ha, Heon-Young
    Park, Sung Soo
    [J]. CORROSION SCIENCE, 2017, 118 : 227 - 232
  • [5] Grain character influences on corrosion of ECAPed pure magnesium
    Birbilis, N.
    Ralston, K. D.
    Virtanen, S.
    Fraser, H. L.
    Davies, C. H. J.
    [J]. CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2010, 45 (03) : 224 - 230
  • [6] Influence of hot rolling on the corrosion behavior of several Mg-X alloys
    Cao, Fuyong
    Shi, Zhiming
    Song, Guang-Ling
    Liu, Ming
    Dargusch, Matthew S.
    Atrens, Andrej
    [J]. CORROSION SCIENCE, 2015, 90 : 176 - 191
  • [7] Recent advances on the development of magnesium alloys for biodegradable implants
    Chen, Yongjun
    Xu, Zhigang
    Smith, Christopher
    Sankar, Jag
    [J]. ACTA BIOMATERIALIA, 2014, 10 (11) : 4561 - 4573
  • [8] Microstructure and mechanical properties of extruded Mg-1Ca-1Zn-0.6Zr alloy
    Geng, J.
    Nie, J. F.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 653 : 27 - 34
  • [9] Grain size distribution effects on the corrosion behaviour of materials
    Gollapudi, Srikant
    [J]. CORROSION SCIENCE, 2012, 62 : 90 - 94
  • [10] In vitro corrosion and biocompatibility of binary magnesium alloys
    Gu, Xuenan
    Zheng, Yufeng
    Cheng, Yan
    Zhong, Shengping
    Xi, Tingfei
    [J]. BIOMATERIALS, 2009, 30 (04) : 484 - 498