All-Instances Restricted Chase Termination for Linear TGDs

被引:2
作者
Gogacz, Tomasz [1 ]
Marcinkowski, Jerzy [2 ]
Pieris, Andreas [3 ]
机构
[1] Univ Warsaw, Inst Informat, Warsaw, Poland
[2] Univ Wroclaw, Inst Comp Sci, Wroclaw, Poland
[3] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
来源
KUNSTLICHE INTELLIGENZ | 2020年 / 34卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
QUERY; RULES;
D O I
10.1007/s13218-020-00690-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The chase procedure is a fundamental algorithmic tool in database theory with a variety of applications. A key problem concerning the chase procedure is all-instances chase termination: for a given set of tuple-generating dependencies (TGDs), is it the case that the chase terminates for every input database? In view of the fact that this problem is, in general, undecidable, it is natural to ask whether well-behaved classes of TGDs, introduced in different contexts, ensure decidability. It has been recently shown that the problem is decidable for the restricted (a.k.a. standard) version of the chase, and linear TGDs, a prominent class of TGDs that has been introduced in the context of ontological query answering, under the assumption that only one atom appears in TGD-heads. We provide an alternative proof for this result based on Monadic Second-Order Logic, which we believe is simpler that the ones obtained from the literature.
引用
收藏
页码:465 / 473
页数:9
相关论文
共 26 条
[1]  
Aho A. V., 1979, ACM Transactions on Database Systems, V4, P435, DOI 10.1145/320107.320112
[2]   On rules with existential variables: Walking the decidability line [J].
Baget, Jean-Francois ;
Leclere, Michel ;
Mugnier, Marie-Laure ;
Salvat, Eric .
ARTIFICIAL INTELLIGENCE, 2011, 175 (9-10) :1620-1654
[3]  
Baget Jean-Francois, 2011, P 22 INT JOINT C ART, P712
[4]  
Bednarczyk B, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1719
[5]   A PROOF PROCEDURE FOR DATA DEPENDENCIES [J].
BEERI, C ;
VARDI, MY .
JOURNAL OF THE ACM, 1984, 31 (04) :718-741
[6]   Benchmarking the Chase [J].
Benedikt, Michael ;
Motik, Boris ;
Konstantinidis, George ;
Papotti, Paolo ;
Tsamoura, Efthymia ;
Mecca, Giansalvatore ;
Santoro, Donatello .
PODS'17: PROCEEDINGS OF THE 36TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2017, :37-52
[7]  
Calautti M, 2019, ICDT, p17:1
[8]   Chase Termination for Guarded Existential Rules [J].
Calautti, Marco ;
Gottlob, Georg ;
Pieris, Andreas .
PODS'15: PROCEEDINGS OF THE 33RD ACM SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2015, :91-103
[9]   Taming the Infinite Chase: Query Answering under Expressive Relational Constraints [J].
Cali, Andrea ;
Gottlob, Georg ;
Kifer, Michael .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2013, 48 :115-174
[10]   A general Datalog-based framework for tractable query answering over ontologies [J].
Cali, Andrea ;
Gottlob, Georg ;
Lukasiewicz, Thomas .
JOURNAL OF WEB SEMANTICS, 2012, 14 :57-83