Iterative Double Sketching for Faster Least-Squares Optimization

被引:0
作者
Wang, Rui [1 ,2 ]
Ouyang, Yanyan [1 ,2 ]
Xu, Wangli [1 ,2 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, Beijing 100872, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162 | 2022年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
ALGORITHMS; REDUCTION; MATRICES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work is concerned with the overdetermined linear least-squares problem for large scale data. We generalize the iterative Hessian sketching (IHS) algorithm and propose a new sketching framework named iterative double sketching (IDS) which uses approximations for both the gradient and the Hessian in each iteration. To understand the behavior of the IDS algorithm and choose the optimal hyperparameters, we derive the exact limit of the conditional prediction error of the IDS algorithm in the setting of Gaussian sketching. Guided by this theoretical result, we propose an efficient IDS algorithm via a new class of sequentially related sketching matrices. We give a non-asymptotic analysis of this efficient IDS algorithm which shows that the proposed algorithm achieves the state-of-the-art trade-off between accuracy and efficiency.
引用
收藏
页数:29
相关论文
共 37 条
[1]   Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes [J].
Ailon, Nir ;
Liberty, Edo .
DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) :615-630
[2]   THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM AND APPROXIMATE NEAREST NEIGHBORS [J].
Ailon, Nir ;
Chazelle, Bernard .
SIAM JOURNAL ON COMPUTING, 2009, 39 (01) :302-322
[3]   Sparse sign-consistent Johnson-Lindenstrauss matrices: Compression with neuroscience-based constraints [J].
Allen-Zhu, Zeyuan ;
Gelashvili, Rati ;
Micali, Silvio ;
Shavit, Nir .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (47) :16872-16876
[4]  
[Anonymous], 2016, ICALP, DOI DOI 10.4230/LIPICS.ICALP.2016.11
[5]   BLENDENPIK: SUPERCHARGING LAPACK'S LEAST-SQUARES SOLVER [J].
Avron, Haim ;
Maymounkov, Petar ;
Toledo, Sivan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) :1217-1236
[6]  
Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
[7]   CONVERGENCE TO THE SEMICIRCLE LAW [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (02) :863-875
[8]   Toward a unified theory of sparse dimensionality reduction in Euclidean space [J].
Bourgain, Jean ;
Dirksen, Sjoerd ;
Nelson, Jelani .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (04) :1009-1088
[9]   IMPROVED MATRIX ALGORITHMS VIA THE SUBSAMPLED RANDOMIZED HADAMARD TRANSFORM [J].
Boutsidis, Christos ;
Gittens, Alex .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (03) :1301-1340
[10]   Finding frequent items in data streams [J].
Charikar, M ;
Chen, K ;
Farach-Colton, M .
THEORETICAL COMPUTER SCIENCE, 2004, 312 (01) :3-15