Stochastic invariance of closed sets with non-Lipschitz coefficients

被引:7
作者
Jaber, Eduardo Abi [1 ,2 ]
Bouchard, Bruno [1 ]
Illand, Camille [2 ]
机构
[1] Univ Paris 09, PSL Univ, CEREMADE, CNRS, F-75016 Paris, France
[2] Multi Asset Client Solut, Quantitat Res, 6 Pl Pyramide, F-92908 Paris, France
关键词
Stochastic differential equation; Stochastic invariance; Affine diffusions; polynomial diffusions; AFFINE PROCESSES; DIFFUSIONS; VIABILITY;
D O I
10.1016/j.spa.2018.06.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper provides a new characterization of the stochastic invariance of a closed subset of R-d with respect to a diffusion. We extend the well-known inward pointing Stratonovich drift condition to the case where the diffusion matrix can fail to be differentiable: we only assume that the covariance matrix is. In particular, our result can be applied to construct affine and polynomial diffusions on any arbitrary closed set. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1726 / 1748
页数:23
相关论文
共 40 条
  • [1] [Anonymous], 2007, CLASSICS MATH
  • [2] [Anonymous], 1998, GRUND MATH WISS
  • [3] Aubin J.P., 1990, Set-Valued Analysis, DOI 10.1007/978-0-8176-4848-0
  • [4] Characterization of stochastic viability of any nonsmooth set involving its generalized contingent curvature
    Aubin, JP
    Doss, H
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (05) : 955 - 981
  • [5] A geometric characterization of viable sets for controlled degenerate diffusions
    Bardi, M
    Jensen, R
    [J]. SET-VALUED ANALYSIS, 2002, 10 (2-3): : 129 - 141
  • [6] BARDI M., 1999, SYS CON FDN, P191
  • [7] Bhatia Rajendra, 1997, Matrix Analysis, Graduate texts in mathematics, V169, DOI 10.1007/978-1-4612-0653-8
  • [8] Bruder B., 2005, PREPRINT
  • [9] Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems
    Buckdahn, Rainer
    Quincampoix, Marc
    Rainer, Catherine
    Teichmann, Josef
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (02): : 207 - 214
  • [10] Small time path behavior of double stochastic integrals and applications to stochastic control
    Cheridito, P
    Soner, HM
    Touzi, N
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (04) : 2472 - 2495