Blowup and scattering problems for the nonlinear Schrodinger equations

被引:50
作者
Akahori, Takafumi [1 ]
Nawa, Hayato [2 ]
机构
[1] Shizuoka Univ, Fac Engn, Hamamatsu, Shizuoka 4328561, Japan
[2] Meiji Univ, Sch Sci & Technol, Dept Math, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
基金
日本学术振兴会;
关键词
CAUCHY-PROBLEM; EXISTENCE; PROFILES;
D O I
10.1215/21562261-2265914
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider L-2-supercritical and H-1-subcritical focusing nonlinear Schrodinger equations. We introduce a subset PW of H-1(R-d) for d >= 1, and investigate behavior of the solutions with initial data in this set. To this end, we divide PW into two disjoint components PW+ and PW_. Then, it turns out that any solution starting from a datum in PW+ behaves asymptotically free, and solution starting from a datum in PW_ blows up or grows up, from which we find that the ground state has two unstable directions. Our result is an extension of the one by Duyckaerts, Holmer, and Roudenko to the general powers and dimensions, and our argument mostly follows the idea of Kenig and Merle.
引用
收藏
页码:629 / 672
页数:44
相关论文
共 28 条
[1]  
[Anonymous], 1999, APPL MATH SCI
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   Scattering in the energy space and below for 3D NLS [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :267-297
[5]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, DOI DOI 10.1090/CLN/010
[6]  
Duyckaerts T, 2008, MATH RES LETT, V15, P1233
[7]   Inhomogeneous Strichartz estimates [J].
Foschi, D .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :1-24
[8]  
Gidas B., 1981, Math. Anal. Appl., VofAdv, P369
[9]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[10]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797