共 50 条
Numerical simulation of thermal stratification and air quality in an underfloor air distribution system (UFAD)
被引:3
作者:
Stephen Lopez, Neil
[1
]
Kay Galeos, Selena
[1
]
Raphael Calderon, Brian
[1
]
Roy Dominguez, David
[1
]
Joseph Uy, Bryan
[1
]
Iyengar, Rupesh
[2
]
机构:
[1] De La Salle Univ, Mech Engn Dept, Manila, Philippines
[2] Index Workshop LLP, Singapore, Singapore
来源:
INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2019
|
2020年
/
463卷
关键词:
COMFORT;
D O I:
10.1088/1755-1315/463/1/012021
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The penetration of underfloor air distribution systems (UFAD) in residential and commercial air conditioning has been rather slow. The most notable applications would be on data centers, where thermal stratification requirements are more demanding. The present study supports and strengthens recent work in the design and development of UFAD systems, by augmenting literature on proper vent positioning and design. In UFAD systems where thermal stratification is more pronounced, significant energy savings may be achieved through proper positioning of supply and return vents. Using a validated numerical simulation model in ANSYS CFX, four UFAD vent layouts are investigated with regards to their implications on thermal stratification and indoor air quality. Results show that not only ventilation layout, but also vent type selection can significantly affect the performance of a UFAD system. Spreading multiple, smaller supply diffusers is preferable than having large supply diffusers on the perimeter of the rooms, both from a temperature distribution and indoor air quality perspective. Notably, air flow is significantly poor in the perimeter layout, causing warmer temperature at the center of the room.
引用
收藏
页数:6
相关论文
共 50 条