Discrete approximation of quantum stochastic models

被引:8
作者
Bouten, Luc [1 ]
Van Handel, Ramon [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
D O I
10.1063/1.3001109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a general technique for proving convergence of repeated quantum interactions to the solution of a quantum stochastic differential equation. The wide applicability of the method is illustrated in a variety of examples. Our main theorem, which is based on the Trotter-Kato theorem, is not restricted to a specific noise model and does not require boundedness of the limit coefficients. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3001109]
引用
收藏
页数:19
相关论文
共 30 条
[1]   THE WEAK-COUPLING LIMIT AS A QUANTUM FUNCTIONAL CENTRAL LIMIT [J].
ACCARDI, L ;
FRIGERIO, A ;
LU, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (03) :537-570
[2]  
Accardi L., 1982, Publ. Rest. Inst. Math. Sci, V18, P97
[3]   From repeated to continuous quantum interactions [J].
Attal, S ;
Pautrat, Y .
ANNALES HENRI POINCARE, 2006, 7 (01) :59-104
[4]  
Barchielli A, 2006, LECT NOTES MATH, V1882, P207
[5]  
BOUTEN L, SIAM REV IN PRESS
[6]   Adiabatic elimination in quantum stochastic models [J].
Bouten, Luc ;
Silberfarb, Andrew .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (02) :491-505
[7]   Approximation and limit theorems for quantum stochastic models with unbounded coefficients [J].
Bouten, Luc ;
van Handel, Ramon ;
Silberfarb, Andrew .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (12) :3123-3147
[8]   On the strong resolvent convergence of the Schrodinger evolution to quantum stochastics [J].
Chebotarev, AM ;
Ryzhakov, GV .
MATHEMATICAL NOTES, 2003, 74 (5-6) :717-733
[9]   Extended weak coupling limit for Pauli-Fierz operators [J].
Derezinski, Jan ;
De Roeck, Wojciech .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :1-30
[10]  
Ethier S.N., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658