Rank one perturbations in a Pontryagin space with one negative square

被引:17
作者
Derkach, V
Hassi, S
de Snoo, H
机构
[1] Donetsk State Univ, Dept Math Anal, UA-340055 Donetsk, Ukraine
[2] Univ Vaasa, Dept Math & Stat, Vaasa 65101, Finland
[3] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
基金
芬兰科学院;
关键词
Pontryagin space; rank one perturbations; symmetric operators; selfadjoint extension; Friedrichs extension; generalized Nevanlinna function;
D O I
10.1006/jfan.2001.3837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N-1 denote the class of generalized Nevanfinna functions with one negative square and let N-1,N-0 be the subclass of functions Q(z) is an element of N, with the additional properties lim(y-->infinity) Q(i y)/y=0 and lim sup(y-->infinity) y\Im Q(i y)\ < infinity. These classes form an analytic framework for studying (generalized) rank one perturbations A(tau) = A+ tau[(.), omega] omega in a Pontryagin space setting. Many functions appearing in quantum mechanical models of point interactions either belong to the subclass N-1,N-0 or can be associated with the corresponding generalized Friedrichs extension. In this paper a spectral theoretical analysis of the perturbations A(tau) and the associated Friedrichs extension is carried out. Many results, such as the explicit characterizations for the critical eigenvalues of the perturbations A(tau), are based on a recent factorization result for generalized Nevanlinna functions. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:317 / 349
页数:33
相关论文
共 35 条
  • [1] Albeverio S., 1988, Solvable Models in Quantum Mechanics
  • [2] Alpay D., 1997, OPERATOR THEORY ADV, V96
  • [3] [Anonymous], 1999, LONDON MATH SOC LECT
  • [4] Azizov T.Ya., 1989, FDN THEORY LINEAR OP
  • [5] BEREZIN FA, 1963, MAT SBORNIK, V60, P425
  • [6] Derkach V, 2001, OPER THEORY ADV APPL, V122, P169
  • [7] Derkach V., 1999, Methods Funct. Anal. Topology, V5, P65
  • [8] Derkach V., 1995, J MATH SCI, V73, P141
  • [9] Derkach V., 2000, METHODS FUNCTIONAL A, V6, P24
  • [10] GENERALIZED RESOLVENTS AND THE BOUNDARY-VALUE-PROBLEMS FOR HERMITIAN OPERATORS WITH GAPS
    DERKACH, VA
    MALAMUD, MM
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) : 1 - 95