A nonlinear problem arising in the theory of growing cell populations

被引:15
作者
Jeribi, A [1 ]
机构
[1] Fac Sci Gabes, Dept Math, Gabes 6029, Tunisia
关键词
boundary value problem; transport equation; nonlinear boundary conditions; fixed point theorems; local and global solutions;
D O I
10.1016/S1468-1218(01)00015-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:85 / 105
页数:21
相关论文
共 16 条
[1]  
Chow S-N., 2012, METHODS BIFURCATION
[2]   ON RADIAL PROJECTION IN NORMED SPACES [J].
DEFIGUEIREDO, DG ;
KARLOVITZ, LA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (03) :364-+
[3]  
JERIBI A, 1998, THESIS U CORSE
[4]  
Jorgen K, 1982, LINEAR INTEGRAL OPER
[5]  
KRASNOSELSKII M. A., 1976, INTEGRAL OPERATORS S
[6]  
Krasnoselskii M.A., 1955, Uspekhi Matematicheskikh Nauk, V10, P123, DOI DOI 10.1016/S0076-5392(08)61895-0
[7]   On a nonlinear stationary problem arising in transport theory [J].
Latrach, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) :1336-1348
[8]   A nonlinear boundary value problem arising in growing cell populations [J].
Latrach, K ;
Jeribi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (07) :843-862
[9]   On an unbounded linear operator arising in the theory of growing cell population [J].
Latrach, K ;
Mokhtar-Kharroubi, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) :273-294
[10]   On a transport equation arising in growing cell populations [J].
Latrach, K ;
Jeribi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (10) :1087-1090