Bayesian Demographic Accounts: Subnational Population Estimation Using Multiple Data Sources

被引:31
|
作者
Bryant, John R.
Graham, Patrick J.
机构
来源
BAYESIAN ANALYSIS | 2013年 / 8卷 / 03期
关键词
demography; official statistics; population estimation; hierarchical Bayesian model; MCMC; MORTALITY; DISTRIBUTIONS; IMMIGRATION; VARIANCE; MODELS; SIZE;
D O I
10.1214/13-BA820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Demographic estimates for small areas within a country have many uses. Subnational population estimation is, however, difficult, requiring the synthesis of multiple inconsistent datasets. Current methods have important limitations, including a heavy reliance on ad hoc adjustment and limited allowance for uncertainty. In this paper we demonstrate how subnational population estimation can be carried out within a formal Bayesian framework. The core of the framework is a demographic account, providing a complete description of the demographic system. Regularities within the demographic account are described by a system model. The relationship between the demographic account and the observable data is described by an observation model. Posterior simulation is carried out using Markov chain Monte Carlo methods. We illustrate the methods using data for six regions within New Zealand.
引用
收藏
页码:591 / 622
页数:32
相关论文
共 50 条
  • [41] Using demographic attributes from long-term monitoring data to delineate natural population structure
    Rushing, Clark S.
    Ryder, Thomas B.
    Scarpignato, Amy L.
    Saracco, James F.
    Marra, Peter P.
    JOURNAL OF APPLIED ECOLOGY, 2016, 53 (02) : 491 - 500
  • [42] Bayesian analysis of genetic architecture of quantitative trait using data of crosses of multiple inbred lines
    Fang, Ming
    Jiang, Dan
    Chen, Xu
    Pu, Lijun
    Liu, Shengcai
    GENETICA, 2008, 134 (03) : 367 - 375
  • [43] Impact of COVID-19 on mortality in Peru using triangulation of multiple data sources
    Huarcaya, William Valdez
    Monzon, Jorge Antonio Miranda
    Saldana, Edwin Omar Napanga
    Driver, Cynthia R.
    REVISTA PANAMERICANA DE SALUD PUBLICA-PAN AMERICAN JOURNAL OF PUBLIC HEALTH, 2022, 46
  • [44] Bayesian analysis of genetic architecture of quantitative trait using data of crosses of multiple inbred lines
    Ming Fang
    Dan Jiang
    Xu Chen
    Lijun Pu
    Shengcai Liu
    Genetica, 2008, 134 : 367 - 375
  • [45] Using multiple disparate data sources to map heat vulnerability: Vancouver case study
    Aminipouri, Mehdi
    Knudby, Anders
    Ho, Hung Chak
    CANADIAN GEOGRAPHER-GEOGRAPHE CANADIEN, 2016, 60 (03): : 356 - 368
  • [46] Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants
    Chan, Yiu-Chung
    Hawas, Olga
    Hawker, Darryl
    Vowles, Peter
    Cohen, David D.
    Stelcer, Eduard
    Simpson, Rod
    Golding, Gary
    Christensen, Elizabeth
    ATMOSPHERIC ENVIRONMENT, 2011, 45 (02) : 439 - 449
  • [47] INFERENCE FOR STOCHASTIC KINETIC MODELS FROM MULTIPLE DATA SOURCES FOR JOINT ESTIMATION OF INFECTION DYNAMICS FROM AGGREGATE REPORTS AND VIROLOGICAL DATA
    Chkrebtii, Oksana A.
    Garcia, Yury E.
    Capistran, Marcos A.
    Noyola, Daniel E.
    ANNALS OF APPLIED STATISTICS, 2022, 16 (02) : 959 - 981
  • [48] Mining Pharmacovigilance Data Using Bayesian Logistic Regression with James-Stein Type Shrinkage Estimation
    An, Lihua
    Fung, Karen Y.
    Krewski, Daniel
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (05) : 998 - 1012
  • [49] Estimation of soil radioactivity-depth profiles using Bayesian inversion of borehole gamma spectrometry data
    Hasan, Md Moudud
    Rogiers, Bart
    Laloy, Eric
    Camps, Johan
    Rutten, Jos
    Huysmans, Marijke
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2023, 257
  • [50] Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning
    Prasad, Ranjitha
    Murthy, Chandra R.
    Rao, Bhaskar D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (14) : 3591 - 3603