Bayesian Demographic Accounts: Subnational Population Estimation Using Multiple Data Sources

被引:31
|
作者
Bryant, John R.
Graham, Patrick J.
机构
来源
BAYESIAN ANALYSIS | 2013年 / 8卷 / 03期
关键词
demography; official statistics; population estimation; hierarchical Bayesian model; MCMC; MORTALITY; DISTRIBUTIONS; IMMIGRATION; VARIANCE; MODELS; SIZE;
D O I
10.1214/13-BA820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Demographic estimates for small areas within a country have many uses. Subnational population estimation is, however, difficult, requiring the synthesis of multiple inconsistent datasets. Current methods have important limitations, including a heavy reliance on ad hoc adjustment and limited allowance for uncertainty. In this paper we demonstrate how subnational population estimation can be carried out within a formal Bayesian framework. The core of the framework is a demographic account, providing a complete description of the demographic system. Regularities within the demographic account are described by a system model. The relationship between the demographic account and the observable data is described by an observation model. Posterior simulation is carried out using Markov chain Monte Carlo methods. We illustrate the methods using data for six regions within New Zealand.
引用
收藏
页码:591 / 622
页数:32
相关论文
共 50 条
  • [1] A Bayesian Approach to Population Estimation with Administrative Data
    Bryant, John R.
    Graham, Patrick
    JOURNAL OF OFFICIAL STATISTICS, 2015, 31 (03) : 475 - 487
  • [2] Reconstruction of a beech population bottleneck using archival demographic information and Bayesian analysis of genetic data
    Lander, Tonya A.
    Oddou-Muratorio, Sylvie
    Prouillet-Leplat, Helene
    Klein, Etienne K.
    MOLECULAR ECOLOGY, 2011, 20 (24) : 5182 - 5196
  • [3] A Bayesian Approach to Produce Subnational Population Estimates Using a Population Base Statistical Register
    Fuquene-Patino, Jairo
    Mendoza, Andryu
    Cristancho, Cesar
    Ospina, Mariana
    JOURNAL OF OFFICIAL STATISTICS, 2025, 41 (01) : 172 - 201
  • [4] Bayesian population estimation for small sample capture-recapture data using noninformative priors
    Wang, Xiaoyin
    He, Chong Z.
    Sun, Dongchu
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (04) : 1099 - 1118
  • [5] Identification of Functional Modules by Integration of Multiple Data Sources Using a Bayesian Network Classifier
    Wang, Jinlian
    Zuo, Yiming
    Liu, Lun
    Man, Yangao
    Tadesse, Mahlet G.
    Ressom, Habtom W.
    CIRCULATION-CARDIOVASCULAR GENETICS, 2014, 7 (02) : 206 - 217
  • [6] Estimating demographic parameters from large-scale population genomic data using Approximate Bayesian Computation
    Li, Sen
    Jakobsson, Mattias
    BMC GENETICS, 2012, 13
  • [7] Prevalence of opioid dependence in New South Wales, Australia, 2014-16: Indirect estimation from multiple data sources using a Bayesian approach
    Downing, Beatrice C.
    Hickman, Matthew
    Jones, Nicola R.
    Larney, Sarah
    Sweeting, Michael J.
    Xu, Yixin
    Farrell, Michael
    Degenhardt, Louisa
    Jones, Hayley E.
    ADDICTION, 2023, 118 (10) : 1994 - 2006
  • [8] Approximate Bayesian Computation applied to time series of population genetic data disentangles rapid genetic changes and demographic variations in a pathogen population
    Saubin, Meline
    Tellier, Aurelien
    Stoeckel, Solenn
    Andrieux, Axelle
    Halkett, Fabien
    MOLECULAR ECOLOGY, 2024, 33 (10)
  • [9] Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources
    Dey, Soumen
    Delampady, Mohan
    Parameshwaran, Ravishankar
    Kumar, N. Samba
    Srivathsa, Arjun
    Karanth, K. Ullas
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2017, 22 (02) : 111 - 139
  • [10] The Hidden Health and Economic Burden of Rotavirus Gastroenteritis in Malaysia An Estimation Using Multiple Data Sources
    Loganathan, Tharani
    Ng, Chiu-Wan
    Lee, Way-Seah
    Jit, Mark
    PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2016, 35 (06) : 601 - 606