Activation of PAD4 in NET formation

被引:288
作者
Rohrbach, Amanda S. [1 ]
Slade, Daniel J. [2 ]
Thompson, Paul R. [2 ]
Mowen, Kerri A. [1 ]
机构
[1] Scripps Res Inst, Dept Chem Physiol, La Jolla, CA USA
[2] Scripps Res Inst, Dept Chem, Jupiter, FL USA
基金
美国国家卫生研究院;
关键词
PAD4; citrullination; deimination; neutrophil; NET; NEUTROPHIL EXTRACELLULAR TRAP; PROTEIN ARGININE DEIMINASE; HISTONE DEIMINATION; STREPTOCOCCUS-PNEUMONIAE; CITRULLINATED PROTEINS; NETTING NEUTROPHILS; CANDIDA-ALBICANS; STRUCTURAL BASIS; CL-AMIDINE; INNATE;
D O I
10.3389/fimmu.2012.00360
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Peptidylarginine deiminases, or PADs, convert arginine residues to the non-ribosomally encoded amino acid citrulline in a variety of protein substrates. PAD4 is expressed in granulocytes and is essential for the formation of neutrophil extracellular traps (NETs) via PAD4-mediated histone citrullination. Citrullination of histones is thought to promote NET formation by inducing chromatin decondensation and facilitating the expulsion of chromosomal DNA that is coated with antimicrobial molecules. Numerous stimuli have been reported to lead to PAD4 activation and NET formation. However, how this signaling process proceeds and how PAD4 becomes activated in cells is largely unknown. Herein, we describe the various stimuli and signaling pathways that have been implicated in PAD4 activation and NET formation, including the role of reactive oxygen species generation. To provide a foundation for the above discussion, we first describe PAD4 structure and function, and how these studies led to the development of PAD-specific inhibitors. A comprehensive survey of the receptors and signaling pathways that regulate PAD4 activation will be important for our understanding of innate immunity, and the identification of signaling intermediates in PAD4 activation may also lead to the generation of pharmaceuticals to target NET-related pathogenesis.
引用
收藏
页数:10
相关论文
共 113 条
[71]   Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes [J].
Nakashima, K ;
Hagiwara, T ;
Yamada, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (51) :49562-49568
[72]   Histone deimination as a response to inflammatory stimuli in neutrophils [J].
Neeli, Indira ;
Khan, Salar N. ;
Radic, Marko .
JOURNAL OF IMMUNOLOGY, 2008, 180 (03) :1895-1902
[73]   Regulation of Extracellular Chromatin Release from Neutrophils [J].
Neeli, Indira ;
Dwivedi, Nishant ;
Khan, Salar ;
Radic, Marko .
JOURNAL OF INNATE IMMUNITY, 2009, 1 (03) :194-201
[74]   Singlet oxygen is essential for neutrophil extracellular trap formation [J].
Nishinaka, Yoko ;
Arai, Toshiyuki ;
Adachi, Souichi ;
Takaori-Kondo, Akifumi ;
Yamashita, Kouhei .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 413 (01) :75-79
[75]   Activation of the Human Contact System on Neutrophil Extracellular Traps [J].
Oehmcke, Sonja ;
Morgelin, Matthias ;
Herwald, Heiko .
JOURNAL OF INNATE IMMUNITY, 2009, 1 (03) :225-230
[76]   Hypochlorous acid regulates neutrophil extracellular trap release in humans [J].
Palmer, L. J. ;
Cooper, P. R. ;
Ling, M. R. ;
Wright, H. J. ;
Huissoon, A. ;
Chapple, I. L. C. .
CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2012, 167 (02) :261-268
[77]   Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps [J].
Papayannopoulos, Venizelos ;
Metzler, Kathleen D. ;
Hakkim, Abdul ;
Zychlinsky, Arturo .
JOURNAL OF CELL BIOLOGY, 2010, 191 (03) :677-691
[78]   NETs: a new strategy for using old weapons [J].
Papayannopoulos, Venizelos ;
Zychlinsky, Arturo .
TRENDS IN IMMUNOLOGY, 2009, 30 (11) :513-521
[79]   Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide [J].
Parker, Heather ;
Albrett, Amelia M. ;
Kettle, Anthony J. ;
Winterbourn, Christine C. .
JOURNAL OF LEUKOCYTE BIOLOGY, 2012, 91 (03) :369-376
[80]   Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity [J].
Parseghian, Missag H. ;
Luhrs, Keith A. .
BIOCHEMISTRY AND CELL BIOLOGY, 2006, 84 (04) :589-604