Design of High Performance Graphene/Silicon Photodetectors

被引:0
作者
Iqbal, Saqib [1 ]
Imran, Hassan [1 ]
Qasim, Usama B. [1 ]
Butt, Nauman Z. [1 ]
机构
[1] LUMS, Dept Elect Engn, Lahore, Pakistan
来源
2017 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2017) | 2017年
关键词
photodetectors; silicon; graphene; responsivity; quantum gain; SUSPENDED GRAPHENE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A thin layer of graphene on a light absorbing substrate (e.g., Silicon (Si)) is capable of an ultrahigh sensitivity for light detection. Demonstrated in both 2 terminal (diode) and 3 terminal (MOSFET) configurations, graphene on Si devices can outperform conventional photodetectors in detecting weak light signals. High photo responsivity in graphene on Si originates from substrate a combined effect of (i) graphene doping due to photo generated carrier injection from substrate, and, (ii) high carrier mobility of graphene which enable a large quantum gain. Here we explore the design parameters that affect the photo induced graphene doping using self-consistent numerical simulations. We note that photo response can be substantially improved when substrate carriers have low mobility and high lifetime. The apparently counter-intuitive dependence of photo response on substrate's mobility is physically explained.
引用
收藏
页码:205 / 208
页数:4
相关论文
共 18 条
[1]   Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection [J].
An, Xiaohong ;
Liu, Fangze ;
Jung, Yung Joon ;
Kar, Swastik .
NANO LETTERS, 2013, 13 (03) :909-916
[2]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Substrate-Induced Photofield Effect in Graphene Phototransistors [J].
Butt, Nauman Z. ;
Sarker, Biddut K. ;
Chen, Yong P. ;
Alam, Muhammad Ashraful .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3734-3741
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   High-performance graphene photodetector using interfacial gating [J].
Guo, Xitao ;
Wang, Wenhui ;
Nan, Haiyan ;
Yu, Yuanfang ;
Jiang, Jie ;
Zhao, Weiwei ;
Li, Jinhuan ;
Zafar, Zainab ;
Xiang, Nan ;
Ni, Zhonghua ;
Hu, Weida ;
You, Yumeng ;
Ni, Zhenhua .
OPTICA, 2016, 3 (10) :1066-1070
[9]   Graphene-On-Silicon Schottky Junction Solar Cells [J].
Li, Xinming ;
Zhu, Hongwei ;
Wang, Kunlin ;
Cao, Anyuan ;
Wei, Jinquan ;
Li, Chunyan ;
Jia, Yi ;
Li, Zhen ;
Li, Xiao ;
Wu, Dehai .
ADVANCED MATERIALS, 2010, 22 (25) :2743-+
[10]   A graphene-based broadband optical modulator [J].
Liu, Ming ;
Yin, Xiaobo ;
Ulin-Avila, Erick ;
Geng, Baisong ;
Zentgraf, Thomas ;
Ju, Long ;
Wang, Feng ;
Zhang, Xiang .
NATURE, 2011, 474 (7349) :64-67