Generation of super-resolution images from blurred observations using Markov random fields

被引:0
|
作者
Rajan, D [1 ]
Chaudhuri, S [1 ]
机构
[1] Indian Inst Technol, Sch Biomed Engg, Bombay 400076, Maharashtra, India
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a new technique for generating a high resolution image from a blurred image sequence; this is also referred to as super-resolution restoration of images. The image sequence consists of decimated, blurred and noisy versions of the high resolution image. The high resolution image is modeled as a Markov random field (MRF) and a maximum aposteriori (MAP) estimation technique is used. A simple gradient descent method is used to optimize the functional. Further, line fields are introduced in the cost function and optimization using Graduated Non-Convexity (GNC) is shown to yield improved results. Lastly, we present results of optimization using Simulated Annealing (SA).
引用
收藏
页码:1837 / 1840
页数:4
相关论文
共 50 条
  • [31] Super-Resolution of Face Images Based on Adaptive Markov Network
    Huang, Dong Jun
    Siebert, J. Paul
    Cockhott, W. Paul
    Xiao, Yi Jun
    SITIS 2007: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGIES & INTERNET BASED SYSTEMS, 2008, : 742 - +
  • [32] New blind restoration of motion blurred images based on super-resolution method
    Zhao, Lin
    Jin, Wei-Qi
    Chen, Yi-Nan
    Zhang, Gui-Qing
    Shen, Ya-Zhong
    Yang, Chun-Song
    Guangzi Xuebao/Acta Photonica Sinica, 2008, 37 (11): : 2355 - 2359
  • [33] Super-resolution via iterative phase retrieval for blurred and saturated biological images
    Gur, Eran
    Sarafis, Vassilios
    Falat, Igor
    Vacha, Frantisek
    Vacha, Martin
    Zalevsky, Zeev
    OPTICS EXPRESS, 2008, 16 (11) : 7894 - 7903
  • [34] Super-Resolution from Corneal Images
    Nitschke, Christian
    Nakazawa, Atsushi
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [35] Super-resolution land cover mapping using a Markov random field based approach
    Kasetkasem, T
    Arora, MK
    Varshney, PK
    REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) : 302 - 314
  • [36] DEPTH MAP SUPER-RESOLUTION VIA MARKOV RANDOM FIELDS WITHOUT TEXTURE-COPYING ARTIFACTS
    Lo, Kai-Han
    Hua, Kai-Lung
    Wang, Yu-Chiang Frank
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1414 - 1418
  • [37] Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
    Ardila, Juan P.
    Tolpekin, Valentyn A.
    Bijker, Wietske
    Stein, Alfred
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (06) : 762 - 775
  • [38] Super-resolution of Color Images using CNN
    Tandale, Ashvini A.
    Kulkarni, N. D.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1804 - 1808
  • [39] SUPER-RESOLUTION USING MULTIPLE QUANTIZED IMAGES
    Ozcelikkale, Ayca
    Akar, Gozde B.
    Ozaktas, Haldun M.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2029 - 2032
  • [40] Super-resolution of images using incoherent light
    Shechtman, Y.
    Szameit, A.
    Eldar, Y. C.
    Segev, M.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,