Toward a Network-based Approach to Modeling Epistatic Interactions in Genome-wide Association Studies

被引:0
作者
Palazuelos, Camilo [1 ,2 ]
Zorrilla, Marta [1 ]
Llorca, Javier [1 ,2 ,3 ]
机构
[1] Univ Cantabria, Santander, Spain
[2] Marques Valdecilla Res Inst IDIVAL, Santander, Spain
[3] CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain
来源
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2017年
关键词
epistasis; genome-wide association studies; interactions; network analysis; single-nucleotide polymorphisms; GENE INTERACTIONS; SUSCEPTIBILITY; CHALLENGES; FRAMEWORK; LOCI;
D O I
10.1109/CBMS.2017.135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In genome-wide association studies, statistical procedures such as logistic regression or the Cochran-Armitage test for trend can be used for the analysis of genetic variants while taking the underlying genetic model into consideration. Should a researcher was to investigate the role played by the interaction between two or more of these genetic variants (epistasis), it would suffice to add an interaction term, which corresponds to their product, to a logistic regression model. However, we question whether such a model is able to capture the intricacy of the genetic architecture in complex traits. Therefore, this paper proposes a network-based model that allows graph theory to characterize both genetic variants and their interactions in a genome-wide context, including a simulation study that proves its applicability.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [41] Genome-Wide Association Studies and Diet
    Ferguson, Lynnette R.
    JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS, 2010, 3 (4-6) : 144 - 150
  • [42] Strategies Beyond Genome-Wide Association Studies for Atherosclerosis
    Maouche, Seraya
    Schunkert, Heribert
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2012, 32 (02) : 170 - 181
  • [43] Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases
    Lee, Younghee
    Li, Haiquan
    Li, Jianrong
    Rebman, Ellen
    Achour, Ikbel
    Regan, Kelly E.
    Gamazon, Eric R.
    Chen, James L.
    Yang, Xinan Holly
    Cox, Nancy J.
    Lussier, Yves A.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (04) : 619 - 629
  • [44] Meta-analysis in genome-wide association studies
    Zeggini, E.
    Ioannidis, J. P. A.
    PHARMACOGENOMICS, 2009, 10 (02) : 191 - 201
  • [45] Quality Control Procedures for Genome-Wide Association Studies
    Truong, Van Q.
    Woerner, Jakob A.
    Cherlin, Tess A.
    Bradford, Yuki
    Lucas, Anastasia M.
    Okeh, Chelsea C.
    Shivakumar, Manu K.
    Hui, Daniel H.
    Kumar, Rachit
    Pividori, Milton
    Jones, S. Chris
    Bossa, Abigail C.
    Turner, Stephen D.
    Ritchie, Marylyn D.
    Verma, Shefali S.
    CURRENT PROTOCOLS, 2022, 2 (11):
  • [46] Genome-Wide Association Studies of Intracranial Aneurysms An Update
    Hussain, Ibrahim
    Duffis, Ennis Jesus
    Gandhi, Chirag D.
    Prestigiacomo, Charles J.
    STROKE, 2013, 44 (09) : 2670 - 2675
  • [47] Longitudinal Data Analysis in Genome-Wide Association Studies
    Beyene, Joseph
    Hamid, Jemila S.
    GENETIC EPIDEMIOLOGY, 2014, 38 : S68 - S73
  • [48] Machine learning approaches to genome-wide association studies
    Enoma, David O.
    Bishung, Janet
    Abiodun, Theresa
    Ogunlana, Olubanke
    Osamor, Victor Chukwudi
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (04)
  • [49] Estimation of a significance threshold for genome-wide association studies
    Kaler, Avjinder S.
    Purcell, Larry C.
    BMC GENOMICS, 2019, 20 (1)
  • [50] Genetics of coronary artery disease in the light of genome-wide association studies
    Schunkert, Heribert
    von Scheidt, Moritz
    Kessler, Thorsten
    Stiller, Barbara
    Zeng, Lingyao
    Vilne, Baiba
    CLINICAL RESEARCH IN CARDIOLOGY, 2018, 107 : S2 - S9