Toward a Network-based Approach to Modeling Epistatic Interactions in Genome-wide Association Studies

被引:0
作者
Palazuelos, Camilo [1 ,2 ]
Zorrilla, Marta [1 ]
Llorca, Javier [1 ,2 ,3 ]
机构
[1] Univ Cantabria, Santander, Spain
[2] Marques Valdecilla Res Inst IDIVAL, Santander, Spain
[3] CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain
来源
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2017年
关键词
epistasis; genome-wide association studies; interactions; network analysis; single-nucleotide polymorphisms; GENE INTERACTIONS; SUSCEPTIBILITY; CHALLENGES; FRAMEWORK; LOCI;
D O I
10.1109/CBMS.2017.135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In genome-wide association studies, statistical procedures such as logistic regression or the Cochran-Armitage test for trend can be used for the analysis of genetic variants while taking the underlying genetic model into consideration. Should a researcher was to investigate the role played by the interaction between two or more of these genetic variants (epistasis), it would suffice to add an interaction term, which corresponds to their product, to a logistic regression model. However, we question whether such a model is able to capture the intricacy of the genetic architecture in complex traits. Therefore, this paper proposes a network-based model that allows graph theory to characterize both genetic variants and their interactions in a genome-wide context, including a simulation study that proves its applicability.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [31] Discovering genetic interactions bridging pathways in genome-wide association studies
    Fang, Gang
    Wang, Wen
    Paunic, Vanja
    Heydari, Hamed
    Costanzo, Michael
    Liu, Xiaoye
    Liu, Xiaotong
    VanderSluis, Benjamin
    Oately, Benjamin
    Steinbach, Michael
    Van Ness, Brian
    Schadt, Eric E.
    Pankratz, Nathan D.
    Boone, Charles
    Kumar, Vipin
    Myers, Chad L.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [32] Genome-Wide Epistatic Network Analyses of Semantic Fluency in Older Adults
    Tan, Qihua
    Li, Weilong
    Nygaard, Marianne
    An, Ping
    Feitosa, Mary
    Wojczynski, Mary K.
    Zmuda, Joseph
    Arbeev, Konstantin
    Ukraintseva, Svetlana
    Yashin, Anatoliy
    Christensen, Kaare
    Mengel-From, Jonas
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [33] Genome-Wide Association Studies in Hepatology
    Weber, S.
    Gruenhage, F.
    Hall, R.
    Lammert, F.
    ZEITSCHRIFT FUR GASTROENTEROLOGIE, 2010, 48 (01): : 56 - 64
  • [34] Successes of Genome-wide Association Studies
    Klein, Robert J.
    Xu, Xing
    Mukherjee, Semanti
    Willis, Jason
    Hayes, James
    CELL, 2010, 142 (03) : 350 - 351
  • [35] Genome-Wide Association Studies and Beyond
    Witte, John S.
    ANNUAL REVIEW OF PUBLIC HEALTH, VOL 31, 2010, 31 : 9 - 20
  • [36] Genome-wide Association: "A Revolutionary Approach"
    Gupta, Vipin
    Saraswathy, K. N.
    Khadgawat, Rajesh
    Sachdeva, M. P.
    INTERNATIONAL JOURNAL OF HUMAN GENETICS, 2009, 9 (02) : 97 - 103
  • [37] Genome-Wide Association Studies in Atherosclerosis
    Sivapalaratnam, S.
    Motazacker, M. M.
    Maiwald, S.
    Hovingh, G. K.
    Kastelein, J. J. P.
    Levi, M.
    Trip, M. D.
    Dallinga-Thie, G. M.
    CURRENT ATHEROSCLEROSIS REPORTS, 2011, 13 (03) : 225 - 232
  • [38] From candidate gene to genome-wide association studies in cardiovascular disease
    Gianfagna, Francesco
    Cugino, Daniela
    Santimone, Iolanda
    Iacoviello, Licia
    THROMBOSIS RESEARCH, 2012, 129 (03) : 320 - 324
  • [39] Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies
    Li, Yun
    O'Connor, George T.
    Dupuis, Josee
    Kolaczyk, Eric
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2015, 14 (03) : 265 - 277
  • [40] Genome-wide association studies with metabolomics
    Adamski, Jerzy
    GENOME MEDICINE, 2012, 4