Fabrication of Metal Nanostructures with Programmable Length and Patterns Using a Modular DNA Platform

被引:40
作者
Ye, Jingjing [1 ,2 ]
Helmi, Seham [2 ,3 ]
Teske, Josephine [2 ]
Seidel, Ralf [1 ,2 ]
机构
[1] Tech Univ Dresden, Cluster Excellence Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[2] Univ Leipzig, Peter Debye Inst Soft Matter Phys, Mol Biophys Grp, D-04103 Leipzig, Germany
[3] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
关键词
Metal nanoparticles; seeded growth; DNA metallization; DNA nanostructures; DNA origami; DNA template; FOLDING DNA; ORIGAMI; METALLIZATION; SHAPES; FLUORESCENCE; TEMPLATES; TRANSPORT; DEVICES;
D O I
10.1021/acs.nanolett.9b00740
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently introduced DNA nanomolds allow the shape-controlled growth of metallic nanoparticles. Here we demonstrate that this approach can be used to fabricate longer linear metal nanostructures of controlled lengths and patterns. To this end, we establish a set of different interfaces that enable mold interactions with high affinity and specificity. These interfaces enable and control the modular assembly of mold monomers into larger mold superstructure with programmable dimension in which each mold monomer remains uniquely addressable. Preloading the molds with nanoparticle seeds subsequently allows the growth of linear gold nanostructures whose lengths are controlled by the DNA structure. Exploiting the addressability of individual mold monomers furthermore allows achievement of site-specific metallization, that is, to create defined metal patterns. We think that the introduced approach provides a useful basis to fabricate nanomaterials with complex shapes and material composition in a fully programmable and modular fashion.
引用
收藏
页码:2707 / 2714
页数:8
相关论文
共 59 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]   DNA Nanotechnology: A foundation for Programmable Nanoscale Materials [J].
Bathe, Mark ;
Rothemund, Paul W. K. .
MRS BULLETIN, 2017, 42 (12) :882-888
[3]   DNA-Mold Templated Assembly of Conductive Gold Nanowires [J].
Bayrak, Tuerkan ;
Helmi, Seham ;
Ye, Jingjing ;
Kauert, Dominik ;
Kelling, Jeffrey ;
Schoenherr, Tommy ;
Weichelt, Richard ;
Erbe, Artur ;
Seidel, Ralf .
NANO LETTERS, 2018, 18 (03) :2116-2123
[4]   DNA rendering of polyhedral meshes at the nanoscale [J].
Benson, Erik ;
Mohammed, Abdulmelik ;
Gardell, Johan ;
Masich, Sergej ;
Czeizler, Eugen ;
Orponen, Pekka ;
Hogberg, Bjorn .
NATURE, 2015, 523 (7561) :441-U139
[5]  
Bio-Rad, CHEMIDOC MP IM SYST
[6]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[7]   Beyond the Fold: Emerging Biological Applications of DNA Origami [J].
Chandrasekaran, Arun Richard ;
Anderson, Nate ;
Kizer, Megan ;
Halvorsen, Ken ;
Wang, Xing .
CHEMBIOCHEM, 2016, 17 (12) :1081-1089
[8]   Folding DNA into Twisted and Curved Nanoscale Shapes [J].
Dietz, Hendrik ;
Douglas, Shawn M. ;
Shih, William M. .
SCIENCE, 2009, 325 (5941) :725-730
[9]   Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami [J].
Ding, Baoquan ;
Deng, Zhengtao ;
Yan, Hao ;
Cabrini, Stefano ;
Zuckermann, Ronald N. ;
Bokor, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (10) :3248-+
[10]   A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads [J].
Douglas, Shawn M. ;
Bachelet, Ido ;
Church, George M. .
SCIENCE, 2012, 335 (6070) :831-834