On k-Maximal Strength Digraphs

被引:8
作者
Anderson, Janet [1 ]
Lai, Hong-Jian [1 ]
Lin, Xiaoxia [2 ]
Xu, Murong [1 ]
机构
[1] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R China
关键词
strong arc connectivity; subdigraph arc connectivity; extremal digraphs; GRAPHS;
D O I
10.1002/jgt.22008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k>0 be an integer and let D be a simple digraph on n>k vertices. We prove that If vertical bar A(D)vertical bar > k(2n - k - 1) + (n - k 2), then D must have a nontrivial subdigraph H such that the strong arc connectivity of H is at least k+1. We also show that this bound is best possible and present a constructive characterization for the extremal graphs.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 5 条
[1]  
Anderson J., 2016, Teachers' perceptions of school violence: A case study Walden
[2]  
Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
[3]  
Bondy J.A., 2008, GTM
[4]   MINIMAL EDGE-N-CONNECTED GRAPHS [J].
MADER, W .
MATHEMATISCHE ANNALEN, 1971, 191 (01) :21-&
[5]   K-COMPONENTS, CLUSTERS, AND SLICINGS IN GRAPHS [J].
MATULA, DW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (03) :459-&