No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix

被引:51
作者
Paul, Debashis [1 ]
Silverstein, Jack W. [2 ,3 ]
机构
[1] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] SAMSI, Res Triangle Pk, NC 27709 USA
基金
美国国家科学基金会;
关键词
Empirical spectral distribution; Stieltjes transform; Separable covariance; CDMA; MIMO; DIMENSIONAL RANDOM MATRICES;
D O I
10.1016/j.jmva.2008.03.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of matrices of the form C-n = (1/N)A(n)(1/2)X(n)B(n)X(n) x A(n)(1//2), where X-n is an n x N matrix consisting of i.i.d. standardized complex entries, A(n)(1/2) is a nonnegative definite square root of the nonnegative definite Hermitian matrix A(n), and B-n is diagonal with nonnegative diagonal entries. Under the assumption that the distributions of the eigenvalues of A(n) and B-n converge to proper probability distributions as n/N --> c is an element of (0, infinity), the empirical spectral distribution of C-n converges a.s. to a non-random limit. We show that, under appropriate conditions on the eigenvalues of A(n) and B-n, with probability 1, there will be no eigenvalues in any closed interval outside the support of the limiting distribution, for sufficiently large n. The problem is motivated by applications in spatio-temporal statistics and wireless communications. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 57
页数:21
相关论文
共 19 条
[1]  
Bai ZD, 1998, ANN PROBAB, V26, P316
[2]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[3]   Eigenvalues of large sample covariance matrices of spiked population models [J].
Baik, Jinho ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) :1382-1408
[4]  
Billingsley P., 1999, Convergence of probability measures, V2nd
[5]   Spectral moments of correlated Wishart matrices [J].
Burda, Z ;
Jurkiewicz, J ;
Waclaw, B .
PHYSICAL REVIEW E, 2005, 71 (02)
[6]  
DEMONVEL AB, 1996, MARKOV PROCESS RELAT, V2, P607
[7]   Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices [J].
Dozier, R. Brent ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (06) :1099-1122
[8]   Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices [J].
El Karoui, Noureddine .
ANNALS OF PROBABILITY, 2007, 35 (02) :663-714
[9]  
Krantz Steven G., 2001, Function Theory of Several Complex Variables, Vsecond
[10]  
Krein MK., 1997, MARKOV MOMENT PROBLE