Asymptotic behavior of stochastic fractional power dissipative equations on Rn

被引:52
作者
Lu, Hong [1 ]
Bates, Peter W. [2 ]
Xin, Jie [3 ]
Zhang, Mingji [4 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Jiangsu, Peoples R China
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Ludong Univ, Sch Math & Stat Sci, Yantai 100191, Shandong, Peoples R China
[4] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
关键词
Stochastic equation; Fractional Laplacian; Asymptotic compactness; Random attractor; Pullback attractor; WELL-POSEDNESS; CAUCHY-PROBLEM; ATTRACTORS; BOUNDARY; KINETICS;
D O I
10.1016/j.na.2015.06.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a reaction-fractional diffusion equation with additive noise on the entire space R-n with particular interest in the asymptotic behavior of solutions. We first transform the equation into a random equation whose solutions generate a random dynamical system. A priori estimates for solutions are derived when the nonlinearity satisfies certain growth conditions. Using estimates for far-field values of solutions and a cut-off technique, asymptotic compactness is proved. Thus, the existence of a random attractor in L-2(R-n) is established. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:176 / 198
页数:23
相关论文
共 37 条
[1]  
[Anonymous], 1984, STUDIES STAT MECH
[2]  
[Anonymous], 1959, Estratto Ann. Sc. Norm. Super. Pisa
[3]  
Arnold L., 1998, RANDOM DYNAMICAL SYS
[4]  
Babin A.V., 1992, Attractors of Evolution Equations
[5]   Random attractors for stochastic reaction-diffusion equations on unbounded domains [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) :845-869
[6]   Attractors for Stochastic lattice dynamical systems [J].
Bates, PW ;
Lisei, H ;
Lu, KN .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :1-21
[7]   Asymptotic compactness and absorbing sets for 2D stochastic Navier- Stokes equations on some unbounded domains [J].
Brzezniak, Zdzislaw ;
Li, Yuhong .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (12) :5587-5629
[8]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[9]   A stochastic pitchfork bifurcation in a reaction-diffusion equation [J].
Caraballo, T ;
Langa, JA ;
Robinson, JC .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2013) :2041-2061
[10]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393