Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy

被引:309
作者
Zhang, Wenjia [1 ,2 ,3 ]
Hu, Xianglong [1 ,2 ,3 ]
Shen, Qi [1 ,2 ,3 ]
Xing, Da [1 ,2 ,3 ]
机构
[1] South China Normal Univ, MOE Key Lab Laser Life Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] South China Normal Univ, Inst Laser Life Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] South China Normal Univ, Coll Biophoton, Guangzhou 510631, Guangdong, Peoples R China
关键词
PROGRAMMED CELL-DEATH; PHOTODYNAMIC THERAPY; CANCER-THERAPY; ROS STRESS; APOPTOSIS; DELIVERY; INTERNALIZATION; DYSFUNCTION; AMPHIPHILES; IRRADIATION;
D O I
10.1038/s41467-019-09566-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics.
引用
收藏
页数:14
相关论文
共 70 条
[1]   Encapsulation and Enzyme-Mediated Release of Molecular Cargo in Polysulfide Nanoparticles [J].
Allen, Brett L. ;
Johnson, Jermaine D. ;
Walker, Jeremy P. .
ACS NANO, 2011, 5 (06) :5263-5272
[2]  
[Anonymous], 2019, ANGEW CHEM
[3]   Mitochondrially targeted anti-cancer agents [J].
Biasutto, Lucia ;
Dong, Lan-Feng ;
Zoratti, Mario ;
Neuzil, Jiri .
MITOCHONDRION, 2010, 10 (06) :670-681
[4]   Bioapplications of RAFT Polymerization [J].
Boyer, Cyrille ;
Bulmus, Volga ;
Davis, Thomas P. ;
Ladmiral, Vincent ;
Liu, Jingquan ;
Perrier, Sebastien .
CHEMICAL REVIEWS, 2009, 109 (11) :5402-5436
[5]   Polyprodrug Antimicrobials: Remarkable Membrane Damage and Concurrent Drug Release to Combat Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus [J].
Cao, Bing ;
Xiao, Fengfeng ;
Xing, Da ;
Hu, Xianglong .
SMALL, 2018, 14 (41)
[6]   Mitochondria: Dynamic organelles in disease, aging, and development [J].
Chan, David C. .
CELL, 2006, 125 (07) :1241-1252
[7]   Self-Assembled Polyprodrug Amphiphile for Subcutaneous Xenograft Tumor Inhibition with Prolonged Acting Time In Vivo [J].
Chen, Dong ;
Huang, Yu ;
Xu, Shuting ;
Jiang, Huangyong ;
Wu, Jieli ;
Jin, Xin ;
Zhu, Xinyuan .
MACROMOLECULAR BIOSCIENCE, 2017, 17 (11)
[8]   Dual-Targeting Pro-apoptotic Peptide for Programmed Cancer Cell Death via Specific Mitochondria Damage [J].
Chen, Wei-Hai ;
Xu, Xiao-Ding ;
Luo, Guo-Feng ;
Jia, Hui-Zhen ;
Lei, Qi ;
Cheng, Si-Xue ;
Zhuo, Ren-Xi ;
Zhang, Xian-Zheng .
SCIENTIFIC REPORTS, 2013, 3
[9]   Molecular Analysis of BRCA1 in Human Breast Cancer Cells Under Oxidative Stress [J].
Gilmore, Brian L. ;
Liang, Yanping ;
Winton, Carly E. ;
Patel, Kaya ;
Karageorge, Vasilea ;
Varano, A. Cameron ;
Dearnaley, William ;
Sheng, Zhi ;
Kelly, Deborah F. .
SCIENTIFIC REPORTS, 2017, 7 :1-9
[10]   Mitochondria in cancer cells: what is so special about them? [J].
Gogvadze, Vladimir ;
Orrenius, Sten ;
Zhivotovsky, Boris .
TRENDS IN CELL BIOLOGY, 2008, 18 (04) :165-173