HYPERSPECTRAL IMAGE CLASSIFICATION WITH SPECTRAL GRADIENT ENHANCEMENT FOR EMPIRICAL MODE DECOMPOSITION

被引:1
|
作者
Erturk, Alp [1 ]
Gullu, M. Kemal [1 ]
Erturk, Sarp [1 ]
机构
[1] Kocaeli Univ, Lab Image & Signal Proc KULIS, Elect & Telecomm Eng Dept, Kocaeli, Turkey
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Hyperspectral image classification; empirical mode decomposition; spectral gradient; genetic algorithm;
D O I
10.1109/IGARSS.2012.6351695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an empirical mode decomposition (EMD) based approach with spectral gradient enhancement for hyperspectral image classification using support vector machines (SVM). In a previous study, it has been shown that using the sum of intrinsic mode functions (IMFs), obtained by applying two-dimensional (2D) EMD to each hyperspectral band, increases the classification accuracies significantly. In this paper, it is shown that using optimum weights for the IMFs, instead of the equal weight approach of the previous study, results in increased classification accuracies. The weights for the IMFs are obtained by a genetic algorithm (GA) based optimization strategy which aims to maximize spectral gradient and hence incorporate spectral processing with the spatial processing of 2D EMD.
引用
收藏
页码:4162 / 4165
页数:4
相关论文
共 50 条
  • [41] Multitask Deep Learning With Spectral Knowledge for Hyperspectral Image Classification
    Liu, Shengjie
    Shi, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2110 - 2114
  • [42] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [43] Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification
    Fang, Jie
    Zhu, Zhijie
    He, Guanghua
    Wang, Nan
    Cao, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [44] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [45] Spectral Channel-Weighting CAT for Hyperspectral Image Classification
    Qi, Yujuan
    Guo, Yuxuan
    Liu, Baodi
    Wang, Yanjiang
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 486 - 500
  • [46] Spectral and Spatial Global Context Attention for Hyperspectral Image Classification
    Li, Zhongwei
    Cui, Xingshuai
    Wang, Leiquan
    Zhang, Hao
    Zhu, Xue
    Zhang, Yajing
    REMOTE SENSING, 2021, 13 (04) : 1 - 24
  • [47] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [48] Spatial-spectral morphological mamba for hyperspectral image classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Khan, Adil Mehmood
    Mazzara, Manuel
    Distefano, Salvatore
    Usama, Muhammad
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    Hong, Danfeng
    NEUROCOMPUTING, 2025, 636
  • [49] Improving deep hyperspectral image classification performance with spectral unmixing
    Guo, Alan J. X.
    Zhu, Fei
    SIGNAL PROCESSING, 2021, 183
  • [50] IRSN: Involutional Residual Spectral Network for Hyperspectral Image Classification
    Cihan, Mucahit
    Ceylan, Murat
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5