HYPERSPECTRAL IMAGE CLASSIFICATION WITH SPECTRAL GRADIENT ENHANCEMENT FOR EMPIRICAL MODE DECOMPOSITION

被引:1
|
作者
Erturk, Alp [1 ]
Gullu, M. Kemal [1 ]
Erturk, Sarp [1 ]
机构
[1] Kocaeli Univ, Lab Image & Signal Proc KULIS, Elect & Telecomm Eng Dept, Kocaeli, Turkey
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Hyperspectral image classification; empirical mode decomposition; spectral gradient; genetic algorithm;
D O I
10.1109/IGARSS.2012.6351695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an empirical mode decomposition (EMD) based approach with spectral gradient enhancement for hyperspectral image classification using support vector machines (SVM). In a previous study, it has been shown that using the sum of intrinsic mode functions (IMFs), obtained by applying two-dimensional (2D) EMD to each hyperspectral band, increases the classification accuracies significantly. In this paper, it is shown that using optimum weights for the IMFs, instead of the equal weight approach of the previous study, results in increased classification accuracies. The weights for the IMFs are obtained by a genetic algorithm (GA) based optimization strategy which aims to maximize spectral gradient and hence incorporate spectral processing with the spatial processing of 2D EMD.
引用
收藏
页码:4162 / 4165
页数:4
相关论文
共 50 条
  • [21] Empirical Mode Decomposition of Hyperspectral Images for Segmentation of Seagrass Coverage
    Mehrubeoglu, Mehrube
    Trombley, Chris
    Shanks, Susan E.
    Cammarata, Kirk
    Simons, James
    Zimba, Paul V.
    McLauchlan, Lifford
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST), 2014, : 33 - 37
  • [22] SPECTRAL REGRESSION DISCRIMINANT ANALYSIS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pan, Yinsong
    Wu, Junyuan
    Huang, Hong
    Liu, Jiamin
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 503 - 508
  • [23] Fast Spectral Clustering for Unsupervised Hyperspectral Image Classification
    Zhao, Yang
    Yuan, Yuan
    Wang, Qi
    REMOTE SENSING, 2019, 11 (04)
  • [24] Pooled hybrid-spectral for hyperspectral image classification
    Banerjee, Anasua
    Banik, Debajyoty
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 10887 - 10899
  • [25] Pooled hybrid-spectral for hyperspectral image classification
    Anasua Banerjee
    Debajyoty Banik
    Multimedia Tools and Applications, 2023, 82 : 10887 - 10899
  • [26] Spectral Swin Transformer Network for Hyperspectral Image Classification
    Liu, Baisen
    Liu, Yuanjia
    Zhang, Wulin
    Tian, Yiran
    Kong, Weili
    REMOTE SENSING, 2023, 15 (15)
  • [27] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [28] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [29] Numerical computation of ocean HABs image enhancement based on empirical mode decomposition and wavelet fusion
    Geng-Kun Wu
    Bei-Ping Zhang
    Jie Xu
    Applied Intelligence, 2023, 53 : 19338 - 19355
  • [30] Numerical computation of ocean HABs image enhancement based on empirical mode decomposition and wavelet fusion
    Wu, Geng-Kun
    Zhang, Bei-Ping
    Xu, Jie
    APPLIED INTELLIGENCE, 2023, 53 (16) : 19338 - 19355