HYPERSPECTRAL IMAGE CLASSIFICATION WITH SPECTRAL GRADIENT ENHANCEMENT FOR EMPIRICAL MODE DECOMPOSITION

被引:1
|
作者
Erturk, Alp [1 ]
Gullu, M. Kemal [1 ]
Erturk, Sarp [1 ]
机构
[1] Kocaeli Univ, Lab Image & Signal Proc KULIS, Elect & Telecomm Eng Dept, Kocaeli, Turkey
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Hyperspectral image classification; empirical mode decomposition; spectral gradient; genetic algorithm;
D O I
10.1109/IGARSS.2012.6351695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an empirical mode decomposition (EMD) based approach with spectral gradient enhancement for hyperspectral image classification using support vector machines (SVM). In a previous study, it has been shown that using the sum of intrinsic mode functions (IMFs), obtained by applying two-dimensional (2D) EMD to each hyperspectral band, increases the classification accuracies significantly. In this paper, it is shown that using optimum weights for the IMFs, instead of the equal weight approach of the previous study, results in increased classification accuracies. The weights for the IMFs are obtained by a genetic algorithm (GA) based optimization strategy which aims to maximize spectral gradient and hence incorporate spectral processing with the spatial processing of 2D EMD.
引用
收藏
页码:4162 / 4165
页数:4
相关论文
共 50 条
  • [1] Hyperspectral Image Classification Using Empirical Mode Decomposition With Spectral Gradient Enhancement
    Erturk, Alp
    Gullu, Mehmet Kemal
    Erturk, Sarp
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 2787 - 2798
  • [2] EMPIRICAL MODE DECOMPOSITION ON REMOVING SPECTRAL NOISE IN HYPERSPECTRAL IMAGE
    Chen Zhi-Gang
    Shu Jiong
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2008, 27 (05) : 378 - 382
  • [3] Hyperspectral Image Classification Based on Empirical Mode Decomposition and Local Binary Pattern
    Li, Changli
    Zuo, Hang
    Wang, Xin
    Shi, Aiye
    Fan, Tanghuai
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, ISCIDE 2017, 2017, 10559 : 440 - 449
  • [4] Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering
    Wang L.
    Wan Y.
    Lu T.
    Yang Y.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2016, 37 (02): : 284 - 290
  • [5] Empirical Mode Decomposition Based Morphological Profile For Hyperspectral Image Classification
    Amiri, Kosar
    Imani, Maryam
    Ghassemian, Hassan
    2023 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS, IPRIA, 2023,
  • [6] EMPIRICAL MODE DECOMPOSITION BASED DECISION FUSION FOR HIGHER HYPERSPECTRAL IMAGE CLASSIFICATION ACCURACY
    Demir, Begum
    Erturk, Sarp
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 488 - 491
  • [7] AN EMPIRICAL MODE DECOMPOSITION AND COMPOSITE KERNEL APPROACH TO INCREASE HYPERSPECTRAL IMAGE CLASSIFICATION ACCURACY
    Demir, Beguem
    Ertuerk, Sarp
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1106 - 1109
  • [8] Hyperspectral image fusion using empirical mode decomposition
    Xu, Yiping
    Hu, Kaoning
    Han, Jianxin
    MIPPR 2007: MEDICAL IMAGING, PARALLEL PROCESSING OF IMAGES, AND OPTIMIZATION TECHNIQUES, 2007, 6789
  • [9] Image Fusion and Enhancement via Empirical Mode Decomposition
    Hariharan, Harishwaran
    Gribok, Andrei
    Abidi, Mongi A.
    Koschan, Andreas
    JOURNAL OF PATTERN RECOGNITION RESEARCH, 2006, 1 (01): : 16 - 31
  • [10] Hyperspectral Image Classification Using Fast and Adaptive Bidimensional Empirical Mode Decomposition With Minimum Noise Fraction
    Yang, Ming-Der
    Huang, Kai-Shiang
    Yang, Yeh Fen
    Lu, Liang-You
    Feng, Zheng-Yi
    Tsai, Hui Ping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1950 - 1954