Multiexponential maps in Carnot groups with applications to convexity and differentiability

被引:3
|
作者
Montanari, Annamaria [1 ]
Morbidelli, Daniele [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词
Carnot groups; SubRiemannian distance; Horizontal convexity; Cone property; Pansu differentiability; GRAPHS;
D O I
10.1007/s10231-020-00994-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze some properties of a class ofmultiexponential mapsappearing naturally in the geometric analysis of Carnot groups. We will see that such maps can be useful in at least two interesting problems: first, in relation to the analysis of some regularity properties of horizontally convex sets. Then, we will show that our multiexponential maps can be used to prove thePansu differentiabilityof the subRiemannian distance from a fixed point.
引用
收藏
页码:253 / 272
页数:20
相关论文
共 50 条
  • [31] Remarks on Lipschitz domains in Carnot groups
    Franchi, Bruno
    Penso, Valentina
    Serapioni, Raul
    GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY, 2014, 4 : 153 - 166
  • [32] SUBELLIPTIC AND PARAMETRIC EQUATIONS ON CARNOT GROUPS
    Bisci, Giovanni Molica
    Ferrara, Massimiliano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (07) : 3035 - 3045
  • [33] CORDES NONLINEAR OPERATORS IN CARNOT GROUPS
    Di Fazio, Giuseppe
    Fanciullo, Maria Stella
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [34] A Cornucopia of Carnot Groups in Low Dimensions
    Le Donne, Enrico
    Tripaldi, Francesca
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 155 - 289
  • [35] Nonlocal diffusion equations in Carnot groups
    Cardoso, Isolda E.
    Vidal, Raul E.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (03) : 2159 - 2180
  • [36] Homogenization and convergence of correctors in carnot groups
    Franchi, B
    Gutiérrez, CE
    Nguyen, TV
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (12) : 1817 - 1841
  • [37] Nonlocal diffusion equations in Carnot groups
    Isolda E. Cardoso
    Raúl E. Vidal
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2159 - 2180
  • [38] On rectifiable measures in Carnot groups: representation
    Antonelli, Gioacchino
    Merlo, Andrea
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [39] A notion of rectifiability modeled on Carnot groups
    Pauls, SD
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (01) : 49 - 81
  • [40] Alt-Caffarelli-Friedman monotonicity formula and mean value properties in Carnot groups with applications
    Ferrari, Fausto
    Forcillo, Nicolo
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (02): : 333 - 348